

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 4

3.3 Design Goals
To enable a secure and efficient verification for the
ranked keyword search, our system design should si-
multaneously satisfy the following goals.

• Efficiency: The proposed scheme should allow data
owners to construct the verification data efficiently.
The cloud server should also return the verification
data without introducing heavy costs. Additionally,
data users can verify the search result efficiently.

• Security: The proposed scheme should prevent the
cloud server from knowing the actual value of the
secret verification data, and which data owners’ data
are returned as verification data.

• Detectability: The proposed scheme should deter
the cloud server from behaving dishonestly. Once
the cloud server behaves dishonestly, the scheme
should detect it with a high probability.

4 PRELIMINARIES

Before we introduce our detailed construction, we first
briefly introduce some techniques that will be used in
this paper.

4.1 Paillier Cryptosystem
Paillier cryptosystem [32] is a public key cryptosystem
with additive homomorphic properties. Let E(a) denote
the paillier encryption on a, and D(E(a)) denotes paillier
decryption on E(a); we have the following properties:
∀a, b ∈ Zn,

D(E(a) · E(b) mod n2) = a+ b mod n

D(E(a)b mod n2) = a · b mod n

4.2 Privacy Preserving Ranked Keyword Search A-
mong Multiple Data Owners
In our previous work [17], we introduce how to achieve
ranked and privacy-preserving keyword search among
multiple data owners. First of all, we systematically
construct protocols on how to encrypt keywords for data
owners, how to generate trapdoors for data users, and
how to perform blind searching for the cloud server.
As a result, different data owners use their own secret
keys to encrypt their files and keywords. Authorized
data users can issue queries without knowing secret
keys of these data owners. Then an Additive Order
Preserving Function family is proposed, which enables
different data owners to encode their relevance scores
with different secret keys, and helps cloud server return
the top-k relevant search results to data users without
revealing any sensitive information.

In this paper, we adopt this ranked and privacy p-
reserving keyword search scheme to return the top-k
search results. Our goal is to systematically construct
schemes that can verify whether the returned top-k
search results are correct.

1. Preparing

verification data

2. Constructing

verification request

3. Mapping verification

data to a data buffer

4. Recovering

and verifying

Fig. 2: The process of verification

5 VERIFYING RANKED TOP-k SEARCH RE-
SULTS

The basic idea of our deterrent based verification scheme
is elaborated as follows: We can consider the dishonest
cloud server as a suspect, the data user as a police chief,
and each verification data as a policeman, who masters
part of the suspect’s actions. Intuitively, the police chief
can gather all the policemen to verify whether the sus-
pect commits a crime. However, this will cause a lot of
manpower, financial and time waste. To overcome this
problem, each time the suspect takes an action, the police
chief only inquires a few policemen to verify whether the
suspect commits a crime. During the process, the police
chief ensures that the suspect does not know which
policemen know his action, and which policemen are
inquired by the police chief. What the suspect knows is
that, once he behaves dishonestly, he will be discovered
with high probability, and punished seriously once dis-
covered. By doing this, we can deter the suspect not to
behave dishonestly.

Different from discovering misbehaviors of the cloud
after the misbehaviors occur, we propose a comple-
mentary and preventive scheme to deter the cloud not
to behave dishonestly. The deterrent in our scheme is
derived from a series of constructions, which include
embedding secret sampling data and anchor data in the
verification data buffer, forcing the cloud conduct blind
computations on ciphertext, updating the verification
data dynamically, and so on. The final goal of our
deterrent based scheme is to deter the cloud not to
behave dishonestly, and once it misbehaves, it would be
detected with high probability.

In what follows, we first give an overview of the
verification construction. Then we introduce the detailed
construction step by step. Note that, we first introduce
how to achieve the single dimensional verification, while
we leave the multi-dimensional verification in the exten-
sion subsection.

5.1 Verification Construction Overview

The verification construction is composed of four steps,
which is illustrated in Fig. 2.

First, each data owner prepares the verification data.
Specifically, each data owner samples ψ files from the
corresponding file set, and obtains the file ID and rele-
vance score. With the effective data sampling, a data user
can verify the correctness of search results belonging to
a specific data owner with a high probability. Then each
data owner exchanges these file IDs and relevance scores

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 5

as anchor data with other θ − 1 data owners uniformly
at random, which will be used to verify the correctness
of search results among data owners. After getting the
sampled data and anchor data, each data owner con-
catenates these data into a string. The encryption of the
string is used as each owner’s verification data.

Second, data users construct a secret verification re-
quest, and indicate the size of verification data buffer.

Third, cloud server operates on the encrypted data and
returns the verification data buffer.

Forth, data users decrypt the returned search results
and verify whether misbehavior occurs.

5.2 Preparing the verification data

In this subsection, we introduce how to prepare the
verification data step by step.

5.2.1 Sampling from original data
Our sampling method is conducted in three steps. First,
the data owner samples files from its original data set.
Second, he extracts the corresponding file IDs, relevance
scores. Third, he attaches the file ID and relevance score
to the owner’s ID. Assume data owner Oi has d files
belonging to keyword wt, he samples ψ files’ data from
these d files for keyword wt, the corresponding process
is shown in Algorithm 1. First of all, Oi initializes the
head of sampled data string as wt||i, where wt denotes
the keyword and i denotes Oi’s ID. Second, Oi ranks
all the files corresponding to wt in descending order of
relevance scores. Third, Oi concatenates FID[0]||RS0,t to
wt||i, where FID[0] denotes the file ID of F0, and RS0,t

denotes the relevance score between F0 and wt. Fourth,
Oi samples ψ − 1 data items from the remaining d − 1
files. The sampled files are composed of two kinds, i.e.,
the first file in wt’s sorted file list, and the other ψ − 1
uniformly and randomly sampled files. Then, all these
ψ sampled data and the head data are concatenated.
Finally, the algorithm outputs the sampled data set SDi.

Algorithm 1 Constructing Sampled data

Input:
Oi’s ID: i, number of sampled data: ψ, and wt’s file
list: FID[d]

Output:
Sampled data: SDi

1: Initialize sampled data SDi to wt||i
2: Rank wt’s file list FID[d] in descending order of

relevance scores
3: Concatenate FID[0]||RS0,t to SDi

4: Uniformly and randomly generate ψ− 1 number set
R where R[i] ∈ [1, d]

5: Rank R incrementally
6: for ind =1 to ψ − 1 do
7: concatenate FID[R[ind]]||RSR[ind],t to SDi

8: end for
9: return SDi

Now we give an example to illustrate the feasibility of
sampling a subset of data as verification data. Assume
professor A has 100 students who have different number
of publication papers. Professor A is very sure that his
student SB has the most papers, and SC has the third
most papers, but he is not clear of the publications
of other students. When the professor asks the corre-
sponding students who have the top-5 most papers,
professor will detect a false answer with a probability
of more than 0.999. This probability is computed as
follows, to compute the probability that the professor
A can detect a misbehavior, we first compute the prob-
ability that A cannot detect the misbehavior. When the
search results guarantee that SB ranks the first and SC
ranks the third, then A cannot detect the misbehavior,
there are P (98, 3) such conditions, where P (n, k) de-
notes the number of permutation. Additionally, there
are P (100, 5) conditions of the probable search results.
Therefore, the probability that the A cannot detect the
misbehavior is P (98, 3)/P (100, 5). Correspondingly, pro-
fessor A can detect the misbehavior with the probability
1− P (98, 3)/P (100, 5) > 0.9998.

5.2.2 Exchanging data among data owners
In our system, multiple data owners are involved. For
a given keyword, each data owner only knows its own
partial order, i.e., each data owner cannot obtain a total
order for the keyword. This brings a great challenge
for data users to verify whether the returned results
are top-k relevant to the search request. A trivial way
is to ask the cloud to return all encoded relevance
scores belonging to different data owners to the data
user, and the data user recomputes the top-k results
for verification, which requires gigantic computation and
communication costs from the data user.

In our scheme, we propose to let data owners ex-
change a very small amount of data. Specifically, given
Oi’s keyword wt, each data owner uses the ψ aforemen-
tioned sampled files to generate interactive data. Since
these operations are conducted among data owners, the
cloud server would not know whether a data owner
has the interactive data of another data owner. For easy
description, we assume each data owner exchanges the ψ
data items with θ−1 data owners uniformly at random,
i.e., after exchanging, each data owner will have θ − 1
data owners’ data, which will be used as secret data to
detect false search results even if a data owner’s data is
not involved in the search results.

5.2.3 Assembling the verification data
Assume data owner Oi receives other θ−1 data owners’
interactive data, Oi will further assemble his verification
data as follows: first, Oi extracts all the file IDs and rele-
vance scores from the interactive data of other θ−1 data
owners. Second, Oi ranks on his ψ sampled data and
(θ−1)·ψ received interactive data. Third, Oi concatenates
all the θ ·ψ data entries in descending order, where each
entry is composed of a file ID and its corresponding

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 6

order. Finally, Oi uses the symmetric encryption (e.g.,
AES [33]) to encrypt the concatenation result with his
secret key Hs(i), where Hs() is the aforementioned se-
cretly shared hash function, i is the Oi’s ID. We denote
the result of the encryption as Vi, therefore, Vi is used
as Oi’s verification data, which will be outsourced to the
cloud server along with Oi’s encrypted indexes and files.

5.3 Submitting verification request
When an authorized data user wants to verify the search
results, he specifies a set of data owners whose veri-
fication data need to be returned to help verification.
The data user can achieve this goal by simply setting
an ID set of his desired data owners. However, the
ID set should not be exposed to the cloud server. The
fundamental reason is illustrated as follows: if the cloud
server knows which data owners’ data are frequently
verified, he can deduce that these data owners’ data are
very useful or sensitive, therefore, these data owners’
data would easily become attackers’ targets. On the other
hand, if the cloud server knows which data owners’ data
are rarely verified, the cloud server will maliciously filter
out or delete these data owners’ data as search results.

To prevent the cloud server from knowing which
data owners’ data are actually returned, we propose to
construct a secret verification request which is illustrated
as follows: First, the data user enlarges the ID set of
verification by inserting random IDs. Assume a data user
wants to get Oi’s verification data, he can add other n−1
data owners’ ID in the set (we can adopt encryption or
obfuscation to hide the true ID, for easy description, we
simply demonstrate with ID hereafter). Second, the data
user attaches a data 0 or 1 to each ID. Here, if the data
user wants to return a data owner’s verification data,
then he attaches 1 to the corresponding ID, otherwise,
0 is attached. Third, the data user encrypts the attached
0 or 1 with the Paillier encryption. Here, we assume all
the data owners and authorized data users share a key
pair, i.e., the public key PK and the private key SK,
for the Paillier encryption. Therefore, 0 is encrypted to
E(PK, 0) and 1 is encrypted to E(PK, 1). With the well
designed Paillier encryption, the cipher-text of the same
data would be different each time. Finally, the data user
submits the ID set and the attached encrypted data set
to the cloud server.

Now we give an example here. Assume a data us-
er Uj needs to download O1’s and O2’s verification
data, first of all, he formulates a large ID set, say,
{O1, O2, O3, · · · , On}, then he attaches E(PK, 1) to O1

and O2, and E(PK, 0) to other IDs. Finally, the data
user submits {< O1, E(PK, 1) >,< O2, E(PK, 1) >,<
O3, E(PK, 0) >, · · · , < On, E(PK, 0) >} as the verifica-
tion request to the cloud server.

5.4 Returning verification data
Upon receiving data user’s verification request, the cloud
server follows Algorithm 2 to prepare and return the

Algorithm 2 Securely returning verification data

Input:
Verification request set [< j,E(PK, rj) >], j ∈ [1, β],
the size of verification data buffer λ

Output:
Verification data buffer V B

1: The cloud initializes V B with λ entries, each entry
with initial value 1

2: for j ∈ [1, β] do
3: Locates Oj ’s verification data Vj
4: Compute vd = E(PK, rj)

Vj

5: for i in range (0,κ) do
6: V B[hi(j)] = V B[hi(j)] · vd
7: end for
8: end for
9: return V B

verification data. Specifically, the cloud server first ini-
tializes a verification data buffer with λ entries, where
λ is specified by the data user. Then, the cloud server
finds the data owner’s verification data indicated by
the requested ID set (line 3), conducts calculations on
the encrypted data (line 4), and maps the results to the
verification data buffer with κ hash functions (line 5-7),
where the output of each hash function belongs to [0, λ].
Note that, since the size of the verification buffer, i.e., λ,
is specified by the data user, different users will submit
different λ to the cloud. To ensure that the output of each
function belongs to [0, λ], instead of changing the κ hash
functions all the time, we only need to specify the cloud
to do a module-λ operation for the output of each hash
function. When the cloud server finishes proceeding all
the IDs in the requested ID set, the result verification
data buffer is returned to the data user. Note that, during
the whole process, the cloud server only sees the large ID
sets, and conducts computation on the encrypted data.
Therefore, the cloud server know nothing about which
data owner’s verification data are actually returned and
used for verification.

In the above description, we propose to use multiple
hash functions, here we elaborate on the reason of in-
troducing these hash functions. To obfuscate the cloud
to know which verification data are actually returned.
There are three alternative ways to prevent the cloud
from knowing which verification data are actually re-
trieved by the data user. First, we can request the cloud
to return all the verification data each time, so that the
cloud knows nothing about which specific verification
data are actually used. However, this method will lead to
a heavy communication cost between the cloud and the
data user. Second, the data user can prepare the enlarged
data set where some fake IDs are also involved, and
specify the cloud to put the verification data in specific
positions in the verification data buffer. However, the
data user has to control the cloud to return data correctly,
which is not user friendly. In addition, during the process

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 7

V1 V2 V3 V4

E(PK,1)
V1

· E(PK,1)
V2 E(PK,0)

V3
E(PK,0)

V3

· E(PK,0)
V4

E(PK,1) E(PK,1) E(PK,0) E(PK,0)

E(PK,1)
V1

E(PK,1)
V1

E(PK,1)
V2

E(PK,0)
V3

E(PK,0)
V4

Verification

data

Request

data

E(PK,1)
V2

E(PK,0)
V4

Verification

data buffer

E(PK,

V1+V2)
E(PK,0) E(PK,0)E(PK,V1) E(PK,V2) E(PK,0)

Fig. 3: Example of verification data buffer construction

of specification, the data user would reveal his sensitive
data. Therefore, we propose the third way, i.e., hash
verification data into verification data buffer directly,
to let the cloud return the verification data without
knowing which and how many verification data are
actually returned.

Now we give an example (shown in Fig. 3) to illus-
trate how to map the verification data into the veri-
fication data buffer, based on the homomorphic prop-
erty of Paillier encryption. First of all, the cloud serv-
er finds the encrypted verification data {V1, V2, V3, V4}.
Then he conducts calculation on the cipher-text, i.e.,
{E(PK, 1)

V1 , E(PK, 1)
V2 , E(PK, 0)

V3 , E(PK, 0)
V4}. Due

to the homomorphism of Paillier encryption, we have:

D(E(PK, 1)V1) = D(E(PK, 1 · V1)) = D(E(PK, V1))
D(E(PK, 1)V2) = D(E(PK, 1 · V2)) = D(E(PK, V2))
D(E(PK, 0)V3) = D(E(PK, 1 · V3)) = D(E(PK, V3))
D(E(PK, 0)V4) = D(E(PK, 1 · V4)) = D(E(PK, V4))

Further, the cloud uses two hash function h1(i) and
h2(i) to map the encrypted data to the verification data
buffer. Again, with the homomorphic property, we have
interesting outcomes, e.g., D(E(PK, 0) · E(PK, V1)) =
D(E(PK, 0+V1)) = D(E(PK, V1)). In this way, the veri-
fication data V1 is returned without known by the cloud.
Finally, the result buffer is returned to the data user. As
we can see, from the viewpoint of the cloud server, the
verification data of four data owners (i.e., O1, O2, O3,
and O4) are processed. As a matter of fact, only O1’s and
O2’s verification data are returned, which is not known
by the cloud.

5.5 Verifying Search Results

5.5.1 Recovering verification data
Upon receiving the verification data buffer V B, the data
user decrypts it with the corresponding private key SK.
After decryption, a data user can recover verification
data from each entry where no collision happens (only
one owner’s data is mapped in the entry, and no other
data are mapped).

Fig. 4 shows the decryption result of V B in Fig. 3, the
data user can recover V1, V2 from the first and second

V1+V2 0 0V1 V2 0

E(PK,

V1+V2)
E(PK,0) E(PK,0)E(PK,V1) E(PK,V2) E(PK,0)

Verification

data buffer

Decrypted

data

Fig. 4: Example of decrypting the verification data buffer

entries of V B, respectively. Note that, since the data
users can pre-compute the entries where no collision
occurs, instead of decrypting the whole verification data
buffer, the authorized data user only needs to decrypt
the entries where no collision occurs, which helps im-
prove the decryption efficiency.

Note that, since the cloud server knows that, if data
collision happens in an entry, the data in that entry
cannot be recovered. To prevent the data user from
recovering the verification data and detecting a misbe-
havior, the cloud server would contaminate the entries
in the verification buffer set, and deceive that collision
happens in these entries. However, this attack cannot
be achieved. The fundamental reason is that, the data
user specifies the IDs of data owners whose verification
data will be returned, and knows the κ hash functions,
therefore, the data user can foresee whether collision
happens in an entry in the verification data buffer. When
the cloud server contaminates the data in these entries,
the misbehavior can be easily detected.

5.5.2 Verifying the ranked search results
When the data user gets some data owners’ verification
data, he can further recover all the sampled data and an-
chor data. The data user will use them to verify whether
the returned results are correct. The verification is done
in two steps: first, the data user verifies whether the data
from a specific data owner is correct. If the search results
pass the first verification, the verification process turns
to the second step, i.e., with the help of anchor data,
the data user verifies whether the search results from
different data owners are correct. After verification, the
data user can detect the cloud server’s misbehavior with
a high probability. In Section 7, we will give an analysis
of the detection probability.

5.6 Extension: Multi-dimensional Verification

As we know, a file is often accompanied with several
keywords, i.e., the index of the files are often multi-
dimensional. If we return verification data for each
dimension (keyword), the communication cost will in-
crease linearly with the amount of dimension increasing.
As a matter of fact, there will be some relationship
among different dimensions. For example, assume the
height of a man is 2.1 meters, then the weight of this
man would very likely be more than 60 kilograms.

We use the pearson correlation coefficient to e-
valuate the correlation of the order list between t-
wo keywords (dimensions). Given w1’s order list

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 8

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

r
1

r 2

Fig. 5: Example of binding dimensions

r1 =< r11, r12, · · · , r1n > and w2’s order list r2 =<
r21, r22, · · · , r2n >, we first compute the covariance
cov(r1, r2) of the two lists, where cov(r1, r2) = E((r1i −
E(r1))(r2i −E(r2))). Then we compute the pearson cor-
relation coefficient r = cov(r1, r2)/(σ(r1) · σ(r2)). Finally,
we use the relationship rule of thumb [34] to evaluate
the correlation of r1 and r2. If |r| ≥ 2/

√
n, then there

exists a strong correlation between r1 and r2. Otherwise,
the correlation is ignored.

Fig. 5 shows an example of binding two dimensions
together. Dimension r1 has value <0.5, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9> and r2 has value <0.5,
1, 1.2, 1.3, 1.5, 1.8, 1.9, 2, 2.1, 2.15, 2.4, 2.45, 2.5, 2.7, 2.75,
2.78, 2.8, 2.88>. We first compute the standard deviation
of r1 and r2, and we get σ(r1) = 2.67 and σ(r2) = 0.7
respectively. Then we compute the covariance of r1 and
r2 and get cov(r1, r2) = 1.82. Now we can get the cor-
relation coefficient r = cov(r1, r2)/(σ(r1) · σ(r2)) = 0.97.
Since 0.97 > 2/

√
18, i.e., r > 2/

√
n, according to the

relationship rule of thumb, we are sure that there exists
a strong correlation between r1 and r2. Therefore, we
further deduce the relationship between r1 and r2, that
is r2 =

√
r1, and the sliding interval is ±0.2.

By finding the relationships among dimensions, we
can bind these dimensions together, and only return very
few dimensions as verification data. As a result, even
if some dimensions are not returned, its value can also
be estimated and verified. In our scheme, data owners
first dig into the relationship among different dimen-
sions, then they model these relationships with some
functions, and further set some bound value for these
relationships. Finally, these functions and bound values
are used to bind the correlated dimensions. Therefore,
once the value of one dimension is returned, the value
of its correlated dimensions can also be estimated.

5.6.1 Discussion
Binding data among dimensions would increase the
detection efficiency. However, when we bind too many
dimensions, the cloud would be much easier to cheat.
Therefore, the problem becomes how to improve the de-
tection efficiency as much as possible without sacrificing
too much security goals. In the future work, we plan to

discuss how to combine different dimensions based on
the characteristics of the data set, and to what extent can
we combine data, so that there would be an excellent
tradeoff.

5.7 Updating verification data stored on the cloud
server
Since the data users in the system would also involve
data owners, if they find that some dishonest behavior
is not detected by the existed verification data, they will
update the verification data stored on the cloud server.
The update can be finished in three steps: first, they
download the verification data from the cloud server.
Second, they decrypt the verification data, update it with
new sampled data and anchor data, and encrypt the new
verification data. Third, they outsource the ciphertext of
the updated verification data to the cloud.

5.8 Auxiliary Deterrent Method
To strengthen the deterrent on the cloud server, we
illustrate some auxiliary deterrent methods here. If the
data user detects any problems during the process of
verification, he will announce the errors to the public.
Otherwise, the data user publishes all the returned data
from the cloud, his trapdoor, and secret verification
request to the public for supervision. We assume the
data owners will periodically check this data published
by the data users. Data owners who have more relevant
files, but are not returned as results, will soon detect the
dishonest behavior of the cloud. This scheme will suffer
some delay, but it will strengthen the deterrent on the
cloud server. On the other hand, once the data users
discover the dishonest behavior, the cloud server should
be seriously penalized. This will force the cloud server
to not dare behave dishonestly.

6 SETTING THE OPTIMAL PARAMETERS

Since the data users are often resource-limited, to control
the communication cost, it would be significant to enable
data users to specify the length of verification data
buffer. To increase the detection probability of potentially
dishonest behaviors of the cloud server, it would be
crucial to recover as many verification data from the
data buffer as possible. An intuitive way of improving
the detection probability is to let the cloud server map
as many data items in the verification data buffer as
possible. However, the more data items are mapped,
the higher probability that a collision will occur. As a
result, when too many data items are mapped into the
verification data buffer, the amount of data that can be
recovered from the data buffer would be very small.

Assume the data user specifies the length of the ver-
ification data buffer as λ, the number of hash function
used for mapping as κ, and the size of enlarged ID set
(i.e., the number of verification data that we map into
the data buffer) as β. The coming question is that, given

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 9

λ and κ, to maximize the number of verification data
that can be recovered from the data buffer, how to set
the optimal β.

Next, we introduce how to obtain the optimal β step
by step. First of all, we compute the probability of re-
covering x data items from the data buffer where β data
items are already mapped. Obviously, the probability is
the same with recovering x colors from the following
color survival game [35] [36].

Color Survival Game: Assume there are β colors,
each color has the same κ balls, we throw these balls
into λ buckets uniformly at random. Once only one ball
falls into a bucket, we say the ball survives. Otherwise,
we say the ball fails. Once any one of κ balls of a
color survives, we say the color survives. Obviously,
the probability of successfully recovering x data from
the data buffer is equal to the probability of x colors
surviving.

Since the probability that color i survives depends on
how many buckets are covered by other β − 1 colors,
we first compute the number of buckets covered by the
other β − 1 colors. Obviously, each color covers κ/λ
percent of the buckets, and the coverage of these colors is
relatively independent; therefore, β− 1 colors will cover
1− (1− κ/λ)β−1 percent of the total buckets. We denote
the number of buckets covered by the other β− 1 colors
as T , therefore,

T =
⌊
λ ·

(
1− (1− κ/λ)

β−1
)⌋

(1)

The probability of color i covered by other colors is
C(T, κ)/C(λ, κ), where C(T, κ) denotes the combinato-
rial number

(
T
κ

)
. We denote the survival probability of

color i as ps, therefore

ps = 1− C(T, κ)/C(λ, κ) (2)

Obviously, each color shares the same survival prob-
ability. Assume the probability that the exact x colors
survive from the buckets is denoted as px, then px =
C(β, x) · (ps)x · (1− ps)

β−x. As we can see, during this
computation, these colors are not strictly independent,
but for the values that make sense, they are essentially
independent. Therefore, the probability that exactly x
data items can be recovered from the verification data
buffer is:

px = C(β, x) · (ps)x · (1− ps)
β−x (3)

We denote the expected number of data items that can
be recovered from the data buffer, where β data items

are already mapped, as E(x), therefore,

E(x) =

β∑
x=1

x · px

=

β∑
x=1

x · C(β, x) · (ps)x · (1− ps)
β−x (4)

= β · ps ·
β−1∑
x=0

C(β − 1, x) · (ps)x · (1− ps)
β−x−1

= β · ps

Obviously, for any κ ≥ 4, the expected number that
we can recover from the data buffer is E(x) = ⌊λ/κ⌋,
i.e., ⌊β · ps⌋ = ⌊λ/κ⌋. With Eq. 1, Eq. 2, and Eq. 4, we can
compute β, which is very close to

⌊
2− ln(κ)

ln(λ−κ)−ln(λ)

⌋
.

Therefore, to recover the max number of data items from
the data buffer, the optimal number of data items that
we map into the data buffer is:

β =

⌊
2− ln(κ)

ln(λ− κ)− ln(λ)

⌋
(5)

Now, we can conclude that, suppose the data user
specify the length of the verification data buffer as λ,
and the number of hash function used for mapping as
κ, to maximize the number of verification data that will
be recovered from the data buffer, we need to specify
the size of the enlarged ID set to be

⌊
2− ln(κ)

ln(λ−κ)−ln(λ)

⌋
.

7 ANALYSIS

In this Section, we will give a thorough analysis of the
security and performance of our proposed schemes. First
of all, we will analyze the security. Then we illustrate the
deterrent proposed by our scheme. Further, we describe
the detailed computation and communication cost for
data owners, cloud server and data users. Finally, we an-
alyze the detection probability of our proposed schemes
with the verification data.

7.1 Security Analysis

Recall that, for ranked and privacy preserving keyword
search, data owners encrypt the keywords, relevance
scores, and files before they outsource these data items
to the cloud. Data users also generate secure trapdoors
before submitting them to the cloud. The security is
proven in [17]. For search result verification, each data
owner constructs a secret verification data which is
encrypted with the AES encryption [33]. Therefore, the
verification data is secure as long as the AES encryption
is secure. The verification request is encrypted with
Paillier encryption [32], the cloud server only conducts
computation on the cipher-texts. Therefore, the verifica-
tion process is secure as long as the Paillier encryption
is secure.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 10

10 20 30 40 50 60 70 80 90 100
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

k

D
et

ec
ti

o
n
 p

ro
b
ab

il
it

y

γ=4

γ=6

(a) m = 10, d = 100, ki = 1.

1 2 3 4 5 6 7 8 9 10
0.999

0.9992

0.9994

0.9996

0.9998

1

k
i

D
et

ec
ti

o
n

 p
ro

b
ab

il
it

y

m=10

m=20

(b) d = 100, γ = 10, k = 50.

1 2 3 4 5 6 7 8 9 10
0.999

0.9992

0.9994

0.9996

0.9998

γ

D
et

ec
ti

o
n

 p
ro

b
ab

il
it

y

m=10

m=20

(c) d = 100, ki = 1, k = 50.

Fig. 6: Misbehavior Detection Probability

7.2 Deterrent Analysis
In this paper, we propose the deterrent-based verification
scheme. During the whole process of verification, the
cloud server only conducts computation on cipher-texts.
Therefore, he does not know how many data owners’
verification data are actually used for verification, or
which data owners’ data are embedded in the verifi-
cation data buffer. Furthermore, the cloud server is not
clear of which data owners, or how many data owners
exchange anchor data. We keep all these information
secret to the cloud server. All the cloud server knows is
that, once he behaves dishonestly, he will be discovered
with a high probability, and punished seriously once
discovered.

7.3 Performance Analysis
7.3.1 Costs for Data Owners
The computational cost for the data owners spent on
verification mainly comes from constructing the verifi-
cation data. For data sampling, the running time mainly
comes from ordering files for each keyword; therefore
the computational complexity is O(d · log(d)). For data
assembling, data owners need to rank the ψ ·θ data items
and then encrypt the assembled data, which is O(ψ · θ).
Therefore, the computational complexity for each data
owner is O(max {d · log(d), ψ · θ}).

The communication cost mainly comes from two as-
pects, i.e., anchor data exchanging, and the verification
data buffer transmission. For anchor data exchanging,
each data owner needs to transmit ψ anchor data to θ−1
data owners, the cost is O(θ · ψ). For verification data
buffer transmission, the communication cost is O(θ · ψ).
So the total communication cost is O(θ · ψ).

7.3.2 Costs for Cloud Server
The computational cost for the cloud server spent on
verification mainly comes from mapping the verification
data into the data buffer. Since the data user provides an
enlarged size of ID set, i.e., β, the cloud server needs to
map the corresponding β data owners’ verification data
to the data buffer, where each data item is mapped κ
times. Therefore, the computational complexity for the
cloud server is O(β · κ).

The communication cost mainly comes from transmit-
ting the data buffer and receiving verification data. The
cloud server needs to return data buffer with λ entries,
where the communication cost of each entry is O(ψ · θ).
For verification data receiving, assume there are m data
owners in the system, the cost is O(m · θ · ψ). Therefore,
the communication cost for the cloud server is O(λ·ψ ·θ).
O(max {λ · ψ · θ,m · θ · ψ}).

7.3.3 Costs for Data User
The computational cost for data users spent on verifica-
tion mainly comes from three aspects: first, constructing
the verification request. That’s O(β). Second, decrypting
the entries where the α requested ID corresponds and no
collision happen, that’s O(κ·α). Third, detecting whether
misbehavior happens, the cost is O(α · θ · ψ). So the
computational cost is O(max {β, κ · α, α · θ · ψ}).

The communication cost for the data users spent on
verification comes from receiving the verification data
buffers, so the communication cost is O(λ · ψ · θ).

7.4 Misbehavior Detection probability

Our proposed scheme should not only ensure a strong
deterrent for potential attacks, but also achieve high
detection probability once the compromised cloud server
misbehaves. Now we analyze the detection probability.

For the k returned search results, suppose ki out of
the k results are also contained in the verification data.
Assume there are m data owners in our system, and
the data user recovers γ distinct verification data from
the data buffer. The data user can detect an error with
probability Pe:

Pe = 1− P (m · d− γ, k − ki)

P (m · d, k)
(6)

The figure shown in Fig. 6 describes the relationship
between the detection probability and the corresponding
parameters. From Fig. 6(a), we observe that, when we
set m = 10 (number of data owners involved in the
system), d = 100 (average number of files corresponding
to a keyword), even if ki = 1, i.e., there are only one
out of k search results has its corresponding verification
data, the detection probability is still more than 0.999.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 11

We can also see that, with the number of returned results
(k) increases, the detection probability increases linearly.
Additionally, the larger γ (number of distinct returned
verification data) is, the higher detection probability is
achieved. The fundamental reason can be easily inferred
from the Equation 6. In Fig. 6(b), we set d = 100, γ = 10,
k = 50, with ki increases, the detection probability also
increases. When ki is larger than 2, the detection proba-
bility is very close to 1. From Fig. 6 (c), we see that, when
we set k = 50, ki = 1, with the value of γ grows up, the
detection probability also grows linearly. Additionally,
the larger m is, the higher probability would be achieved.

8 PERFORMANCE EVALUATION

In this Section, we demonstrate a thorough evaluation
on our proposed scheme. First of all, we evaluate the
computational cost of the data owners, the cloud server,
and the data users. Then we evaluate the functionality
of the verification data buffer.

8.1 Experiment Settings
The experiment programs are coded using the Python
programming language on a Laptop with 2.2GHZ Intel
Core CPU and 2GB memory. We use the Pailier Encryp-
tion [32] for data encryption; the secret key is set to be
512 bits.

8.2 Experiment Results
Recall that the time cost for each data owner mainly
comes from ranking, string concatenating, and sym-
metric encryption. Fig. 7(a) and Fig. 7(b) show that,
with the number of sampled data (ψ) and exchanged
data (θ) increasing, the time cost of the data owners
increases linearly. The fundamental reason is that, with ψ
and θ increasing, more data items are concatenated and
encrypted, which results in more time consumption.

The time cost of the cloud server spent on verification
mainly comes from two aspects, i.e, conducting compu-
tation on the user submitted cipher-text and mapping
the computation result to the verification data buffer.
Fig. 8(a) shows that, with the size of enlarged ID set
(β) increasing, the corresponding time cost will increase
linearly. The reason is that more IDs will lead to more
computation on the cipher-text, and more time will be
needed. Fig. 8(b) demonstrates that, the time cost of the
cloud server has little connection with the size of the
verification data buffer.

Fig. 9 shows the time cost of data users. Fig. 9(a) illus-
trates the time cost of generating verification request. As
we can see, when the size of the enlarged ID set increases
from 10 to 100, the corresponding time cost increases
from 0.024s to 0.24s. The reason is that, the larger the
β is, the more Paillier encryption will be conducted. We
also observe that the time cost of the data user has little
connection with α. The reason is that, compared with
the time cost spent on Paillier encryption, conducting

α symmetric encryption operations is relatively low.
Fig. 9(b) demonstrates the time cost of decrypting and
recovering the verification data. Since the time is mainly
spent on decrypting the verification data buffer, with the
size of the data buffer increasing, the corresponding time
cost of data users increases linearly.

Fig. 10 shows the ratio of data recovered from the
verification data buffer with different parameters. Fig.
10(a) shows that, when the size of the verification data
buffer is set to be 500, i.e., λ = 500, the ratio of data
recovered from the verification data buffer will decrease
with the number of mapped data increasing. Meantime,
the more hash functions we use, the lower ratio that
data can be recovered. The fundamental reason is that,
the more data we map into the data buffer, the higher
probability that data collision will occur, which renders
some data cannot be recovered. Therefore, the ratio of
recovered data will decrease accordingly.

Fig. 10(b) demonstrates that, when we set the number
of hash functions to be 30, i.e., κ=30, with the size of the
data buffer increasing, the ratio of recovered data will
increase. Meanwhile, the less data we map, the faster
the data recovery ratio will increase. The reason is that
larger data buffer and less data mapped into the buffer
will reduce the probability of data collision; therefore,
the ratio of recovered data will increase.

Fig. 10(c) demonstrates that, when the number of
entries is set to 500, the ratio of data recovery will
decrease with the number of hash functions increasing;
the more data items we map into the verification data
buffer, the faster the data recover ratio will decrease.

Fig. 11 shows the number of data recovered from the
verification data buffer with different parameters. Fig.
11(a) shows that, when λ = 500, with the amount of
mapped data increasing, the number of data recovered
from the verification data buffer will first increase and
then fall down. We illustrate this phenomenon as fol-
lows: when we map a few data items into the verification
data buffer, few data collisions will occur, and almost
all the data can be recovered from the verification data
buffer. Therefore, the amount of recovered data will in-
crease. However, when the amount of data we map into
the verification data buffer increases to a threshold, data
collision will also increase with the increasing number of
distributed data. Obviously, data collision will cause data
to be unrecoverable. Therefore, the amount of recovered
data will decrease when we map too many data items
into the verification data buffer.

Fig. 11(b) demonstrates that, when we set κ = 30, with
the size of the verification data buffer increasing, the
number of recovered data will increase. An interesting
feature shown in Fig. 11(b) is that, the fewer items we
map into the verification data buffer, the prior data
can be recovered from the verification data buffer. The
fundamental reason is that, with fewer data items, we
need fewer entries to accommodate data collision.

Fig. 11(c) demonstrates that, when λ = 500, the
amount of recovered data will decrease with the number

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 12

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Number of Sampled Data

T
im

e
C

o
st

 o
f

O
p
er

at
io

n
 (

m
s)

θ=10

θ=20

(a)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Number of Exchanged data

T
im

e
C

o
st

 o
f

O
p
er

at
io

n
 (

m
s)

ψ=10

ψ=20

(b)

Fig. 7: Time cost of the data owner

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Size of Enlarged ID Data

T
im

e
C

o
st

 o
f

O
p

er
at

io
n

 (
s)

λ=100

λ=200

(a)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Size of Verification Data Buffer

T
im

e
C

o
st

 o
f

O
p
er

at
io

n
 (

s)

β=10

β=30

(b)

Fig. 8: Time cost of the cloud server

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Size of Enlarged Data Set

T
im

e
C

o
st

 o
f

O
p
er

at
io

n
 (

×
 1

0−
2
s) α=4

α=10

(a)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Size of Verification Data Buffer (× 102)

T
im

e
C

o
st

 o
f

O
p
er

at
io

n
 (

×
 1

0−
2
s) α=4

α=10

(b)

Fig. 9: Time cost of the data user

of hash functions increases; additionally, the more data
items we map into the verification data buffer, the faster
the number of recovered data will decrease. The reason
is that, the more mapping operations and data items
we map into the verification data buffer, the higher
probability that a data collision will occur, which leads
to the amount of recovered data decreasing.

9 CONCLUSION

In this paper, we explore the problem of verification
for the secure ranked keyword search, under the model
where cloud servers would probably behave dishonestly.
Different from previous data verification schemes, we
propose a novel deterrent-based scheme. During the
whole process of verification, the cloud server is not
clear of which data owners, or how many data owners

exchange anchor data used for verification, he also does
not know which data owners’ data are embedded in
the verification data buffer or how many data owners’
verification data are actually used for verification. All
the cloud server knows is that, once he behaves dishon-
estly, he would be discovered with a high probability,
and punished seriously once discovered. Additionally,
when any suspicious action is detected, data owners
can dynamically update the verification data stored on
the cloud server. Furthermore, our proposed scheme
allows the data users to control the communication
cost for the verification according to their preferences,
which is especially important for the resource limited
data users. Finally, with thorough analysis and extensive
experiments, we confirm the efficacy and efficiency of
our proposed schemes.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 13

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Mapped Data

R
at

io
 o

f
R

ec
o
v
er

ed
 D

at
a

κ=20

κ=30

κ=40

(a) λ = 500.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Entries

R
a
ti

o
 o

f
R

e
c
o
v
e
re

d
 D

a
ta

θ=50

θ=70

θ=90

(b) κ=30.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hash function

R
a
ti

o
 o

f
R

e
c
o
v
e
re

d
 D

a
ta

θ=30

θ=40

θ=50

(c) λ =500.

Fig. 10: Ratio of data recovered from the verification data buffer

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Number of Mapped Data

N
u

m
b

er
 o

f
R

ec
o
v

er
ed

 D
at

a

κ=20

κ=30

κ=40

(a) λ = 500.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Number of Entries

N
u

m
b

e
r

o
f

R
e
c
o
v

e
re

d
 D

a
ta

θ=50

θ=70

θ=90

(b) κ=30.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Number of hash function

N
u

m
b

e
r

o
f

R
e
c
o
v

e
re

d
 D

a
ta

κ=30

κ=40

κ=50

(c) λ =500.

Fig. 11: Amount of data recovered from the verification data buffer

ACKNOWLEDGMENTS

This work is supported in part by the National Natu-
ral Science Foundation of China (Project No. 61173038,
61472125). Thanks to the China Scholarship Council for
providing the foundation.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-

winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Communication of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[2] C. Zhu, V. Leung, X. Hu, L. Shu, and L. T. Yang, “A review of key
issues that concern the feasibility of mobile cloud computing,” in
Green Computing and Communications (GreenCom), 2013 IEEE and
Internet of Things (iThings/CPSCom), IEEE International Conference
on and IEEE Cyber, Physical and Social Computing. IEEE, 2013, pp.
769–776.

[3] Ritz, “Vulnerable icloud may be the reason to celebrity photo
leak.” [Online]. Available: http://marcritz.com/icloud-flaw-leak/

[4] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked key-
word search over encrypted cloud data,” in Proc. IEEE Distributed
Computing Systems (ICDCS’10), Genoa, Italy, Jun. 2010, pp. 253–
262.

[5] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in Proc.
IEEE INFOCOM’11, Shanghai, China, Apr. 2011, pp. 829–837.

[6] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and
H. Li, “Privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,” in Proc. IEEE ASIACCS’13,
Hangzhou, China, May 2013, pp. 71–81.

[7] Z. Xu, W. Kang, R. Li, K. Yow, and C. Xu, “Efficient multi-keyword
ranked query on encrypted data in the cloud,” in Proc. IEEE
Parallel and Distributed Systems (ICPADS’12), Singapore, Dec. 2012,
pp. 244–251.

[8] A. Ibrahim, H. Jin, A. A. Yassin, and D. Zou, “Secure rank-
ordered search of multi-keyword trapdoor over encrypted cloud
data,” in Proc. IEEE Asia-Pacific Conference on Services Computing
(APSCC’12), Guilin, China, Dec. 2012, pp. 263–270.

[9] B. Hore, E. C. Chang, M. H. Diallo, and S. Mehrotra, “Indexing
encrypted documents for supporting efficient keyword search,”
in Proc. Secure Data Management (SDM’12), Istanbul, Turkey, Aug.
2012, pp. 93–110.

[10] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
keyword search over encrypted data in cloud computing,” in Proc.
IEEE INFOCOM’10, San Diego, CA, Mar. 2010, pp. 1–5.

[11] M. Chuah and W. Hu, “Privacy-aware bedtree based solution
for fuzzy multi-keyword search over encrypted data,” in Proc.
IEEE 31th International Conference on Distributed Computing Systems
(ICDCS’11), Minneapolis, MN, Jun. 2011, pp. 383–392.

[12] P. Xu, H. Jin, Q. Wu, and W. Wang, “Public-key encryption with
fuzzy keyword search: A provably secure scheme under keyword
guessing attack,” IEEE Transactions on Computers, vol. 62, no. 11,
pp. 2266–2277, 2013.

[13] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in IEEE
INFOCOM, Toronto, Canada, May 2014, pp. 2112–2120.

[14] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and
privacy-assured similarity search over outsourced cloud data,” in
Proc. IEEE INFOCOM’12, Orlando, FL, Mar. 2012, pp. 451–459.

[15] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Attribute-based keyword search with fine-grained owner-
enforced search authorization in the cloud,” in Proc. IEEE INFO-
COM’14, Toronto, Canada, May 2014, pp. 226–234.

[16] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: Verifiable attribute-
based keyword search over outsourced encrypted data,” in Proc.
IEEE INFOCOM’14, Toronto, Canada, May 2014, pp. 522–530.

[17] W. Zhang, S. Xiao, Y. Lin, T. Zhou, and S. Zhou, “Secure ranked
multi-keyword search for multiple data owners in cloud com-
puting,” in Proc. 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN2014). Atlanta, USA: IEEE,
jun 2014, pp. 276–286.

[18] W. Zhang, Y. Lin, S. Xiao, Q. Liu, and T. Zhou, “Secure dis-
tributed keyword search in multiple clouds,” in Proc. IEEE/ACM
IWQOS’14, Hongkong, May 2014, pp. 370–379.

[19] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public
auditing for shared data in the cloud,” IEEE Transactions on Cloud
Computing, vol. 2, no. 1, pp. 43–56, 2014.

[20] J. Li, X. Tan, X. Chen, D. Wong, and F. Xhafa, “Opor: En-

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481389, IEEE Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 14

abling proof of retrievability in cloud computing with resource-
constrained devices,” IEEE Transactions on Cloud Computing, 2014.

[21] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, “Verifying
completeness of relational query results in data publishing,” in
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. ACM, 2005, pp. 407–418.

[22] M. Narasimha and G. Tsudik, “Dsac: integrity for outsourced
databases with signature aggregation and chaining,” in Proceed-
ings of the 14th ACM international conference on Information and
knowledge management. ACM, 2005, pp. 235–236.

[23] H. Pang and K. Mouratidis, “Authenticating the query results of
text search engines,” Proceedings of the VLDB Endowment, vol. 1,
no. 1, pp. 126–137, 2008.

[24] R. C. Merkle, “A certified digital signature,” in Proc. Advances in
Cryptology (CRYPTO’89), California USA, Aug. 1989, pp. 218–238.

[25] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynam-
ic authenticated index structures for outsourced databases,” in
Proceedings of the 2006 ACM SIGMOD international conference on
Management of data. ACM, 2006, pp. 121–132.

[26] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Au-
thenticated indexing for outsourced spatial databases,” The VLDB
JournalłThe International Journal on Very Large Data Bases, vol. 18,
no. 3, pp. 631–648, 2009.

[27] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in
location-based services with confidentiality,” Proceedings of the
VLDB Endowment, vol. 7, no. 1, 2013.

[28] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-
based services without compromising location privacy,” in Pro-
ceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. ACM, 2012, pp. 301–312.

[29] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. Hou, and H. Li,
“Verifiable privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking,” TPDS, 2013.

[30] W. Zhang, S. Xiao, Y. Lin, J. Wu, and S. Zhou, “Privacy preserving
ranked multi-keyword search for multiple data owners in cloud
computing,” IEEE Transactions on Computers, 2015.

[31] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),”
2001.

[32] P. Paillier, “Public-key cryptosystems based on composite degree

residuosity classes,” in Advances in cryptologyłEUROCRYPT99.
Springer, 1999, pp. 223–238.

[33] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002.

[34] S. B. Green, “How many subjects does it take to do a regression
analysis,” Multivariate behavioral research, vol. 26, no. 3, pp. 499–
510, 1991.

[35] “Importance of being urnest.” [Online]. Available:
http://www.mathpages.com/home/kmath321.htm

[36] R. Ostrovsky and W. E. Skeith III, “Private searching on streaming
data,” in Advances in Cryptology–CRYPTO 2005. Springer, 2005,
pp. 223–240.

Wei Zhang was born in 1990, received his B.S.
degree in Computer Science from Hunan Uni-
versity, China, in 2011. Since 2011, he has been
a Ph.D. candidate in College of Computer Sci-
ence and Electronic Engineering, Hunan Univer-
sity. Since 2014, he has been a visiting student
in Department of Computer and Information Sci-
ences, Temple University. His research interests
include cloud computing, network security and
data mining.

Yaping Lin received the B.S. degree in Comput-
er Application from Hunan University, China, in
1982, and the M.S. degree in Computer Applica-
tion from National University of Defense Tech-
nology, China in 1985. He received the Ph.D.
degree in Control Theory and Application from
Hunan University in 2000. He has been a pro-
fessor and Ph.D supervisor in Hunan University
since 1996. During 2004-2005, he worked as
a visiting researcher at the University of Texas
at Arlington. His research interests include ma-

chine learning, network security and wireless sensor networks.

