
1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

1

Cloud-based Multimedia Content Protection

System

Mohamed Hefeeda, Senior Member, IEEE, Tarek ElGamal, Kiana Calagari,

and Ahmed Abdelsadek

Abstract

We propose a new design for large-scale multimedia content protection systems. Our design leverages

cloud infrastructures to provide cost efficiency, rapid deployment, scalability, and elasticity to accommo-

date varying workloads. The proposed system can be used to protect different multimedia content types,

including 2D videos, 3D videos, images, audio clips, songs, and music clips. The system can be deployed

on private and/or public clouds. Our system has two novel components: (i) method to create signatures

of 3D videos, and (ii) distributed matching engine for multimedia objects. The signature method creates

robust and representative signatures of 3D videos that capture the depth signals in these videos and it is

computationally efficient to compute and compare as well as it requires small storage. The distributed

matching engine achieves high scalability and it is designed to support different multimedia objects. We

implemented the proposed system and deployed it on two clouds: Amazon cloud and our private cloud.

Our experiments with more than 11,000 3D videos and 1 million images show the high accuracy and

scalability of the proposed system. In addition, we compared our system to the protection system used

by YouTube and our results show that the YouTube protection system fails to detect most copies of

3D videos, while our system detects more than 98% of them. This comparison shows the need for the

proposed 3D signature method, since the state-of-the-art commercial system was not able to handle 3D

videos.

Index Terms

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Hefeeda and T. ElGamal are with Qatar Computing Research Institute, Qatar (QCRI).

K. Calagari and A. Abdelsadek are with the School of Computing Science, Simon Fraser University, Canada. They were

visiting QCRI as interns during this work.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

2

Video copy detection, cloud applications, 3D video, video fingerprinting, depth signatures

I. INTRODUCTION

Advances in processing and recording equipment of multimedia content as well as the availability

of free online hosting sites have made it relatively easy to duplicate copyrighted materials such as

videos, images, and music clips. Illegally redistributing multimedia content over the Internet can result

in significant loss of revenues for content creators. Finding illegally-made copies over the Internet

is a complex and computationally expensive operation, because of the sheer volume of the available

multimedia content over the Internet and the complexity of comparing content to identify copies.

We present a novel system for multimedia content protection on cloud infrastructures. The system

can be used to protect various multimedia content types, including regular 2D videos, new 3D videos,

images, audio clips, songs, and music clips. The system can run on private clouds, public clouds, or

any combination of public-private clouds. Our design achieves rapid deployment of content protection

systems, because it is based on cloud infrastructures that can quickly provide computing hardware and

software resources. The design is cost effective because it uses the computing resources on demand. The

design can be scaled up and down to support varying amounts of multimedia content being protected.

The proposed system is fairly complex with multiple components, including: (i) Crawler to download

thousands of multimedia objects from online hosting sites, (ii) Signature method to create representative

fingerprints from multimedia objects, and (iii) distributed matching engine to store signatures of original

objects and match them against query objects. We propose novel methods for the second and third

components, and we utilize off-the-shelf tools for the crawler. We have developed a complete running

system of all components and tested it with more than 11,000 3D videos and 1 million images. We

deployed parts of the system on the Amazon cloud with varying number of machines (from 8 to 128),

and the other parts of the system were deployed on our private cloud. This deployment model was used

to show the flexibility of our system, which enables it to efficiently utilize varying computing resources

and minimize the cost, since cloud providers offer different pricing models for computing and network

resources. Through extensive experiments with real deployment, we show the high accuracy (in terms of

precision and recall) as well as the scalability and elasticity of the proposed system.

The contributions of this paper are as follows:

• Complete multi-cloud system for multimedia content protection. The system supports different types

of multimedia content and can effectively utilize varying computing resources.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

3

• Novel method for creating signatures for 3D videos. This method creates signatures that capture the

depth in stereo content without computing the depth signal itself, which is a computationally expensive

process.

• New design for a distributed matching engine for high-dimensional multimedia objects. This design

provides the primitive function of finding K-nearest neighbors for large-scale datasets. The design also

offers an auxiliary function for further processing of the K neighbors. This two-level design enables the

proposed system to easily support different types of multimedia content. For example, in finding video

copies, the temporal aspects need to be considered in addition to matching individual frames. This is

unlike finding image copies. Our design of the matching engine employs the MapReduce programming

model.

• Rigorous evaluation study using real implementation to assess the performance of the proposed system

and compare it against the closest works in academia and industry. Specifically, we evaluate the entire

end-to-end system with 11,000 3D videos downloaded from YouTube. Our results show that a high

precision, close to 100%, with a recall of more than 80% can be achieved even if the videos are subjected

to various transformations such as blurring, cropping, and text insertion. In addition, we compare our

system versus the Content ID system used by YouTube to protect videos. Our results show that although

the Content ID system provides robust detection of 2D video copies, it fails to detect copies of 3D

videos when videos are subjected to even simple transformations such as re-encoding and resolution

change. Our system, on the other hand, can detect almost all copies of 3D videos even if they are

subjected to complex transformations such as synthesizing new virtual views and converting videos to

anaglyph and 2D-plus-depth formats.

Furthermore, we isolate and evaluate individual components of our system. The evaluation of the new

3D signature method shows that it can achieve more than 95% precision and recall for stereoscopic

content subjected to 15 different video transformations; several of them are specific to 3D videos such

as view synthesis. The evaluation of the distributed matching engine was done on the Amazon cloud

with up to 128 machines. The engine was used to manage up to 160 million data points, each with 128

dimensions, extracted from over 1 million images. The results show that our design of the matching

engine is elastic and scalable. They also show that our system outperforms the closest object matching

system in the literature, called RankReduce, by a wide margin in accuracy and it is more efficient in

terms of space and computation.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

4

The rest of this paper is organized as follows. We summarize the related works in Section II. In

Section III, we present the design goals and a high-level description of the proposed system. In Section IV,

we present the details of the proposed signature creation method. In Section V, we describe the design

of the matching engine. Our implementation and rigorous evaluation of the whole system as well as its

individual components are presented in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

The problem of protecting various types of multimedia content has attracted significant attention

from academia and industry. One approach to this problem is using watermarking [11], in which some

distinctive information is embedded in the content itself and a method is used to search for this information

in order to verify the authenticity of the content. Watermarking requires inserting watermarks in the

multimedia objects before releasing them as well as mechanisms/systems to find objects and verify the

existence of correct watermarks in them. Thus, this approach may not be suitable for already-released

content without watermarks in them. The watermarking approach is more suitable for the somewhat

controlled environments, such as distribution of multimedia content on DVDs or using special sites and

custom players. Watermarking may not be effective for the rapidly increasing online videos, especially

those uploaded to sites such as YouTube and played back by any video player. Watermarking is not the

focus of this paper.

The focus of this paper is on the other approach for protecting multimedia content, which is content-

based copy detection (CBCD) [16]. In this approach, signatures (or fingerprints) are extracted from

original objects. Signatures are also created from query (suspected) objects downloaded from online

sites. Then, the similarity is computed between original and suspected objects to find potential copies.

Many previous works proposed different methods for creating and matching signatures. These methods

can be classified into four categories: spatial, temporal, color and transform-domain. Spatial signatures

(particularly the block-based) are the most widely used. However, their weakness is the lack of resilience

against large geometric transformations. Temporal and color signatures are less robust and can be used

to enhance spatial signatures. Transform-domain signatures are computationally intensive and not widely

used in practice. For more details, see surveys for audio fingerprinting [5] and 2D video fingerprinting

[16].

Youtube Content ID [10], Vobile VDNA [25] and MarkMonitor [18] are some of the industrial examples

which use fingerprinting for media protection, while methods such as [13] can be referred to as the

academic state-of-the-art. Unlike previous works, the contribution of this paper is to design a large-scale

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

5

system to find copies that can be used for different types of multimedia content and can leverage multi-

cloud infrastructures to minimize the cost, expedite deployment, and dynamically scale up and down.

That is, we design our system such that previous content-based copy detection methods for creating and

matching signatures can be implemented within our system.

In addition to our cloud-based system, we propose a new method for 3D video fingerprinting, and

a new design for the distributed matching engine. The works related to each of these components are

summarized in the following subsections.

A. 3D Video Signatures

Content-based copy detection of 3D videos is a fairly new problem; we are aware of only two previous

works [21] and [12]. The work in [21] computes SIFT points in each view and uses the number of

matching SIFT points to verify matches. Comparing all SIFT points in each frame is not practical for

large databases due to the storage overhead and search complexity. On the other hand, the work in [12]

assumes that the depth maps are given or estimated. Estimating the depth map from stereoscopic videos

is quite expensive. The method in [12] is suitable for 3D videos encoded in the video plus depth format,

but not for stereoscopic videos. Our proposed method in this paper captures the depth properties without

calculating the depth map itself and it is computationally efficient because it does not compare all features

in the frame.

Although 3D copy detection methods are scarce in the literature, there are many methods available

for 2D video copy detection. Hampapur et al. [9] use the temporal features of the video as the signature.

Similarly, Tasdemir et al. [23] use motion vectors as the signature for each frame. Some methods use

color histograms as signatures, e.g., [9]. The color histogram signature is prone to global variations in

color which are common when recoding video. Another group of methods use interest points of video

frames as signature. For example, Liu et al. [15] use local SIFT features as the frame signature. Using

gradient information has also shown to be robust to many 2D transformations [13].

All of the above 2D video fingerprinting methods can be implemented in the proposed system. In

addition, while some of these methods can be used for 3D video copy detection, they are designed

for 2D videos, and they ignore the information in different views and the depth of 3D videos. This

information is important especially in the presence of 3D video transformations such as view synthesis,

where views from different viewpoints can be generated using the depth map of the 3D video. When two

new views are synthesized, the positioning of each pixel in the frame is changed, and some areas are

occluded while other areas become visible. The luminance, gradient, color and even the interest points in

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

6

each block can change as well when a new view is synthesized. Thus, the extracted signature using any of

the 2D methods will change accordingly. Therefore, when searching for similar signatures, manipulated

versions may not be identified. The importance of using signatures that have some information from the

depth signal has been shown in [12]. In addition, our experiments and comparisons in this paper show

that the state-of-the-art copy detection system used by YouTube (called Content ID) fails to detect many

simple transformations made on 3D videos such as re-encoding, conversion to row or column interleaved

formats, and creating new virtual views. Based on the available information from the patent describing

the Content ID system [10] and our own experiments, we believe that the poor performance of Content

ID on 3D videos is because it does not consider any depth information.

B. Distributed Matching Engine

Unlike many of the previous works, e.g., [3] which designed a system for image matching, our proposed

matching engine is general and it can support different types of multimedia objects, including images,

2D videos, and 3D videos. To achieve this generality, we divide the engine into two main stages. The

first stage computes nearest neighbors for a given data point, and the second stage post-processes the

computed neighbors based on the object type. In addition, our design supports high-dimensionality which

is needed for multimedia objects that are rich in features.

Computing nearest neighbors is a common problem in many applications. Our focus in this paper is

on distributed techniques that can scale to large datasets such as [14], [17], [3], [22]. Liao et al. [14]

build a multi-dimensional index using R-tree on top of the Hadoop distributed file system (HDFS). Their

index, however, can only handle low dimensional datasets—they performed their experiments with two

dimensional data. They solve the K nearest neighbors over large datasets using MapReduce [7]. Lu et

al. [17] construct a Voronoi-like diagram using some selected pivot objects. They then group the data

points around the closest pivots and assign them to partitions, where searching can be done in parallel.

The system in [17] is also designed for low dimensional datasets; it did not consider data with more than

30 dimensions. In contrast, in our experiments we used images and videos with up to 128 dimensions.

Aly et al. [3] propose a distributed system for image retrieval. A major drawback of this system is using

a single root machine that directs all query points, which makes it a single point of failure as well as a

bottleneck that could slow down the whole system. Our system does not use a central node, and thus it

is more robust and scalable.

The closest work to ours is the RankReduce system [22], which implements a distributed LSH (Locality

Sensitive Hashing) index on a computing cluster using MapReduce. RankReduce maintains multiple hash

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

7

tables over a distributed cluster, which requires storing multiple replicas of the datasets in hash tables.

This incurs significant storage cost and it increases the number of I/O operations. In contrast, our system

stores the dataset only once. We compare the proposed matching engine against RankReduce and we

show that our system returns more accurate neighbors and it is more efficient.

III. OVERVIEW OF THE PROPOSED SYSTEM

The goal of the proposed system for multimedia content protection is to find illegally made copies

of multimedia objects over the Internet. In general, systems for multimedia content protection are large-

scale and complex with multiple involved parties. In this section, we start by identifying the design goals

for such systems and our approaches to achieve them. Then, we present the high-level architecture and

operation of our proposed system.

A. Design Goals and Approaches

A content protection system has three main parties: (i) content owners (e.g., Disney), (ii) hosting sites

(e.g., YouTube), and (iii) service providers (e.g., Audible Magic). The first party is interested in protecting

the copyright of some of its multimedia objects, by finding whether these objects or parts of them are

posted on hosting sites (the second party). The third party is the entity that offers the copy finding service

to content owners by checking hosting sites. In some cases the hosting sites offer the copy finding service

to content owners. An example of this case is YouTube, which offers content protection services. And

in other, less common, cases the content owners develop and operate their own protection systems.

We define and justify the following four goals as the most important ones in multimedia content

protection systems.

• Accuracy: The system should have high accuracy in terms of finding all copies (high recall) while

not reporting false copies (high precision). Achieving high accuracy is challenging, because copied

multimedia objects typically undergo various modifications (or transformations). For example, copied

videos can be subjected to cropping, embedding in other videos, changing bit rates, scaling, blurring,

and/or changing frame rates. Our approach to achieve this goal is to extract signatures from multimedia

objects that are robust to as many transformations as possible.

• Computational Efficiency: The system should have short response time to report copies, especially

for timely multimedia objects such as sports videos. In addition, since many multimedia objects are

continually added to online hosting sites, which need to be checked against reference objects, the

content protection system should be able to process many objects over a short period of time. Our

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

8

Fig. 1. Proposed cloud-based multimedia content protection system.

approach to achieve this goal is to make the signatures compact and fast to compute and compare

without sacrificing their robustness against transformations.

• Scalability and Reliability: The system should scale (up and down) to different number of multimedia

objects. Scaling up means adding more objects because of monitoring more online hosting sites, having

more content owners using the system, and/or the occurrence of special events such as sports tournament

and release of new movies. Conversely, it is also possible that the set of objects handled by the system

shrinks, because, for example, some content owners may terminate their contracts for the protection

service. Our approach to handle scalability is to design a distributed system that can utilize varying

amounts of computing resources.

With large-scale distributed systems, failures frequently occur, which require the content protection

system to be reliable in face of different failures. To address this reliability, we design the core parts of

our system on top of the MapReduce programming framework, which offers resiliency against different

types of failures.

• Cost Efficiency: The system should minimize the cost of the needed computing infrastructure. Our

approach to achieve this goal is to design our system to effectively utilize cloud computing infrastruc-

tures (public and/or private). Building on a cloud computing infrastructure also achieves the scalability

objective discussed above and reduces the upfront cost of the computing infrastructure.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

9

B. Architecture and Operation

The proposed cloud-based multimedia content protection system is shown in Figure 1. The system has

multiple components; most of them are hosted on cloud infrastructures. The figure shows the general case

where one or more cloud providers can be used by the system. This is because some cloud providers

are more efficient and/or provide more cost saving for different computing and communication tasks.

For example, a cloud provider offering lower cost for inbound bandwidth and storage can be used for

downloading and temporarily storing videos from online sites (top cloud in the figure), while another

cloud provider (or private cloud) offering better compute nodes at lower costs can be used to maintain

the distributed index and to perform the copy detection process (lower cloud in the figure).

The proposed system can be deployed and managed by any of the three parties mentioned in the

previous section: content owners, hosting sites, or service providers. The proposed system has the

following main components, as shown in Figure 1:

• Distributed Index: Maintains signatures of objects that need to be protected.

• Reference Registration: Creates signatures from objects that content owners are interested in protecting,

and inserts them in the distributed index.

• Query Preparation: Creates signatures from objects downloaded from online sites, which are called

query signatures. It then uploads these signatures to a common storage.

• Object Matching: Compares query signatures versus reference signatures in the distributed index to

find potential copies. It also sends notifications to content owners if copies are found.

• Parallel Crawling: Downloads multimedia objects from various online hosting sites.

The Distributed Index and Object Matching components form what we call the Matching Engine,

which is described in Section V. The second and third components deal with signature creation, which is

described in Section IV. For the Crawling component, we designed and implemented a parallel crawler

and used it to download videos from YouTube. The details of the crawler are omitted due to space

limitations.

The proposed system functions as follows. Content owners specify multimedia objects that they are

interested in protecting. Then, the system creates signatures of these multimedia objects (called reference

objects) and inserts (registers) them in the distributed index. This can be one time process, or a continuous

process where new objects are periodically added. The Crawl component periodically (e.g., once a day)

downloads recent objects (called query objects) from online hosting sites. It can use some filtering (e.g.,

YouTube filtering) to reduce the number of downloaded objects. For example, for video objects, it can

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

10

download videos that have a minimum number of views or belong to specific genre (e.g., sports). The

signatures for a query object are created once the Crawl component finishes downloading that object

and the object itself is removed. After the Crawl component downloads all objects and the signatures

are created, the signatures are uploaded to the matching engine to perform the comparison. Compression

of signatures can be performed before the upload to save bandwidth. Once all signatures are uploaded

to the matching engine, a distributed operation is performed to compare all query signatures versus the

reference signatures in the distributed index.

IV. SIGNATURE CREATION

The proposed system is designed to handle different types of multimedia objects. The system abstracts

the details of different media objects into multi-dimensional signatures. The signature creation and

comparison component is media specific, while other parts of the system do not depend on the media

type. Our proposed design supports creating composite signatures that consist of one or more of the

following elements:

• Visual signature: created based on the visual parts in multimedia objects and how they change with

time.

• Audio signature: created based on the audio signals in multimedia objects.

• Depth signature: if multimedia objects are 3D, signatures from their depth signals are created.

• Meta data: created from information associated with multimedia objects such as their names, tags,

descriptions, format types, and IP addresses of their uploaders or downloaders.

Previous works have addressed creating visual signatures for 2D videos [16] and audio signals [5].

These works and others can be supported by our system in a straightforward manner. In the current

paper, we present a novel method for creating depth signatures from stereoscopic 3D videos, which are

the most common format of 3D videos nowadays. In such videos, the depth signal is not explicitly given.

Rather, the video is presented in two views. Our method computes a signature of the depth signal without

computing the depth signal itself.

The proposed method takes as input a 3D video encoded in stereo format, which is composed of

two views (left view for left eye and right view for right eye). Each view is a stream of frames which

correspond to frames in the other view. The output of the method is a signature for each pair of frames. To

reduce the computation and storage costs, subsampling can be applied in which signatures are computed

only for a subset of frames, e.g., every tenth frame.

The proposed method is composed of the following main steps.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

11

• Step 1: Compute Visual Descriptors for Left and Right Images. Visual descriptors are local features

that describe salient parts of an image. Different types of descriptors can be used, including, SURF,

SIFT, and HOG (Histogram of Oriented gradients). The default descriptor used in our method is SURF.

Each descriptor has a fixed number of dimensions or features. For example, each SURF descriptor has

64 dimensions. Each descriptor i is computed at a specific pixel in the image, which has a location of

(xi, yi). The result of this step is two sets of descriptors; one for the left image and one for the right

image:

DL
i = (fi1, fi2, . . . , fiF) , i = 1, 2, . . . , Ln, (1)

DR
j = (fj1, fj2, . . . , fjF) , j = 1, 2, . . . , Rn, (2)

where Ln and Rn are the number of descriptors in the left and right images, respectively and F is the

number of dimensions in each descriptor.

• Step 2: Divide each Image into Blocks. Both the left and right images are divided into the same number

of blocks. In general, blocks can be of different sizes and each can be a square or other geometrical

shape. In our implementation, we use equal-size square blocks. Thus, each image is divided into N×M

blocks.

• Step 3: Match Visual Descriptors. For each visual descriptor in the left image, we find the closest

descriptor in the right image. We consider the block that the descriptor is located in and we find its

corresponding block in the right image. We draw a larger window around this corresponding block.

This is done to account for any slight changes in the visual objects between the left and right views.

Different types of similarity measures can be used to compute the distance between feature vectors. In

our implementation, we use the Euclidean distance to compute the distance between descriptors:

DL
i −DR

j =

√

(fi1 − fj1)
2 + · · ·+ (fiF − fjF)

2 . (3)

We compute the distance between each visual descriptor in the left image and all descriptors in the

corresponding block of the right image. The corresponding match is the descriptor with the smallest

distance.

• Step 4: Compute Block Disparity. We compute the block disparity between each block in the left image

and its corresponding block in the right image. The disparity of a single descriptor i is given by:

√

((xi − xj)/Wb)
2 + ((yi − yj)/Hb)

2 , (4)

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

12

where (xi, yi) is the position of descriptor i in the left image, and (xj, yj) is the position of the

corresponding descriptor j in the right image. We normalize the disparity by the width Wb and the

height Hb of each block in the image. The disparity of block bi is denoted by Sbi and computed as

the average disparity of all visual descriptors in that block. If a block or its corresponding block in the

right image does not have any descriptor, the disparity is set to 0.

• Step 5: Compute Signature. The signature of the two corresponding images is: (Sb1 , Sb2 , . . . , SbN×M
).

We note that the signature is compact and fixed in size as the total number of blocks N ×M is fixed

and small (in our experiments, we have 5× 5 blocks).

In summary, our method constructs coarse-grained disparity maps using stereo correspondence for

a sparse set of points in the image. Stereo correspondence tries to identify a part in an image that

corresponds to a part in the other image. A fine-grained disparity map of a pair of images describes the

displacement needed for each pixel to move from one image to the correct position in the other image.

The disparity map is inversely proportional to the depth map, meaning that the disparity is larger for

objects near the camera than objects far away from the camera. Since fine-grained disparity maps are

expensive to compute, we create our signature from coarse-grained disparity maps, which are computed

from blocks of pixels.

V. DISTRIBUTED MATCHING ENGINE

We design a matching engine suitable for different types of multimedia objects that is scalable and

elastic. Scalability is needed to handle large datasets with millions of multimedia objects. Elasticity is

a desirable feature that allows our system to utilize varying amount of computing resources offered on

cloud infrastructures.

In general, multimedia objects are characterized by many features and each feature is of high dimen-

sions. For example, an image can be characterized by 100–200 SIFT descriptors, and each has up to

128 dimensions, and a video object will have even more features extracted from its frames. In addition,

different types of multimedia objects require different number of features as well as different processing

operations in order to decide on object matching. For example, matching two video clips requires not

only matching individual frames, but also the temporal sequence of these frames. This is unlike image

matching. To address this generality, we design the matching engine as two stages. In the first stage, the

engine provides an efficient, distributed, implementation for computing K nearest neighbors for high-

dimensional data. In the second stage, the engine provides a generic interface for post processing these

neighbors based on the different needs of various media types and applications. For instance, for video

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

13

Reference

Points

Query
Points

Build Index
- Create Directing Tree

- Distribute points to bins

Matching

Results

B1 B3B2 B4

Match Objects
- Partition Query Points

- Find K nearest neighbors

- App-specific processing

Directing
Tree

Bins

Fig. 2. High-level architecture of the distributed index component used in the multimedia content protection system. Round

boxes are MapReduce jobs.

copy protection, the individual frame matching is done in the first stage and the temporal aspects are

considered in the second stage. For image protection, the second stage can be empty.

The matching engine is implemented using the MapReduce distributed programming model [7]. The

design is not restricted to MapReduce and can be implemented in other distributed programming platforms.

MapReduce provides an infrastructure that runs on a cluster of machines, which automatically manages the

execution of multiple computations in parallel as well as the communications among these computations.

This distributed design allows the index to scale to large volumes of data and to use variable amounts

of computational resources. It also provides transparent redundancy and fault tolerance to computations.

The following subsections briefly describe the index construction and object matching operations. More

details can be found in [1] and our preliminary work in [2].

A. Constructing the Matching Engine

The basic design of the matching engine is illustrated in Figure 2. It has a data structure that we call

the distributed index as well as distributed processing operations. The index is divided into two parts: (i)

Directing tree and (ii) Bins. Directing tree is a space partitioning tree [20] that is used to group similar

points in the same or close-by bins. It is also used to forward query points to bins with potential matches.

Bins are leaf nodes of the directing tree, but they are stored as files on the distributed file system. All

processing of the matching engine is performed in two distributed operations: (i) Build Index, and (ii)

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

14

Match Objects. The first creates the index from reference data points, and the second matches query

objects versus reference objects in the index.

The design of our index has two main features that make it simple to implement in a distributed manner,

yet efficient and scalable. First, data points are stored only at leaf nodes. Intermediate nodes do not store

any data, they only store meta data to guide the search through the tree. This significantly reduces the

size of the directing tree and makes it fit easily in the main memory of a single machine even for large

datasets. This feature allows us to distribute copies of the directing tree to distributed machines to process

queries in parallel. Replicating the directing tree on different machines not only facilitates distributed

processing, but it also greatly improves the robustness and efficiency of the system. The robustness is

improved because there is no single point of failures. The efficiency is improved because there is no

central machine or set of machines that other machines need to contact during the computation. The

second feature of our index design is the separation of leaf nodes (bins) and storing them as files on the

distributed file system. This increases reliability as well as simplifies the implementation of the distributed

computations in our system, because concurrent accesses of data points are facilitated by the distributed

file system.

The distributed index is constructed from reference objects, which is done before processing any queries.

Constructing the index involves two steps: (i) creating the directing tree and (ii) distributing the reference

dataset to bins. Once created, the directing tree is serialized as one object and stored on the distributed

file system. This serialized object can be loaded in memory by various computational tasks running on

multiple machines in parallel. Distribution of data is done in parallel on multiple machines using a simple

MapReduce job.

The directing tree is the top part of the index, which contains all non-leaf nodes. Different types of

trees [20] can be used as directing tree, after we perform our ideas of keeping data points only at leaves,

aggregating data points into bins, and storing bins on the distributed file system. We chose the KD tree

[4] as the base for our directing tree, because of its efficiency and simplicity. A KD tree is a binary

tree in which every node is a K-dimensional point. Every non-leaf node can be considered as a splitting

hyperplane that divides the space into two parts. Points to the left of this hyperplane represent the left

sub-tree of that node and points to the right of the hyperplane represent the right sub-tree. The hyperplane

direction is chosen in a way such that every node in the tree is associated with one of the K dimensions,

with the hyperplane perpendicular to that dimension’s axis, and it splits the data points around it into

two equal-size subsets. The equal-size subsets make the tree balanced.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

15

We are interested in matching objects with high dimensions. Thus, if we use the traditional KD tree,

it will be too deep with too many leaf nodes and each has only one data point, which is not efficient

especially in distributed processing environment where accessing any node may involve communications

over the network. We control the depth of the tree based on the size of the dataset such that the size

of bins at the bottom of the tree roughly matches the storage block size of the distributed file system.

In real deployment, the size of a leaf node is in the order of 64 to 128 MBs, which means that each

leaf node will contain thousands of data points. Thus, the size of our directing tree will be small. Since

we compress the depth of the tree, we use only a subset of the dimensions of the data points. We use

the principal component analysis (PCA) to choose the most representative dimensions to project the

dataset on. PCA is a well studied technique for dimension reduction. It finds a hyperplane of the required

target dimensionality to project the actual points on, such that the variance among them after projection

is maximized. It finds this hyperplane by calculating the singular value decomposition (SVD) of the

covariance matrix of the input points.

B. Matching Objects

The object matching process is done in three steps: (i) partitioning query dataset, (ii) finding K nearest

neighbors for each data point in the query dataset, and (iii) performing application-specific object matching

using the found K nearest neighbors. Each of these three steps is executed in parallel on the MapReduce

infrastructure. The first step partitions the query dataset such that each partition contains a bin and a list

of data points that are likely to have neighbors in that bin. This is done using the directing tree, which

is used to create the list of data points that corresponds to each bin.

The second and third steps of the object matching process first find the K nearest neighbors and then

apply application-specific function(s) on them to produce the final object matching results. These steps

are achieved through one MapReduce job that has one mapper and two consecutive reducers. The mapper

and first reducer compute the K nearest neighbors for all points in the query dataset. The second reducer

performs various post processing functions on the K nearest neighbors based on the multimedia object

type.

VI. EVALUATION

We have implemented and integrated all parts of the proposed content protection system: from a web

user interface to control various parts of the system and its configurations, to tools to allocate, release, and

manage cloud resources, to all algorithms for creating and matching signatures, as well as all distributed

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

16

MapReduce algorithms for processing thousands of multimedia objects. This is a fairly complex system

with tens of thousands of lines of code in different programming and scripting languages.

We validated our proposed multi-cloud architecture by deploying part of our system on the Amazon

cloud and the other part on our local private cloud. The Amazon cloud had up to 20 machines and

our private cloud had 10 machines each with 16 cores. We deployed the Parallel Crawling and Query

Preparation components on the Amazon cloud. This is because the Amazon cloud has large Internet links

and it can support downloading thousands of multimedia objects from various sites, such as YouTube.

The relatively close proximity and good connectivity of Amazon data centers in North America to major

multimedia content hosting sites accelerates the download process. More importantly, at the time of our

experiments, the Amazon pricing model did not charge customers for inbound bandwidth while it charged

for outbound bandwidth. Since the majority of our workload is downloading multimedia objects (inbound

traffic), this deployment minimized our costs, and it indeed shows the benefits of our architecture, which

can opportunistically utilize resources from different clouds. After downloading each multimedia object,

we create signatures from it and immediately delete the object itself as it is no longer needed–we keep

the object URL link on the hosting site from which we downloaded it. This minimizes our storage cost

on Amazon. Signatures from multiple multimedia objects are then grouped, compressed, and transferred

to our private cloud for more intensive processing. Once uploaded to the private cloud, the signatures are

deleted from Amazon to save storage. On our private cloud, we deploy the matching engine and all of

its related operations. These include building the distributed index from reference objects and matching

query objects versus reference objects in the index. The crawling and matching operations are done

periodically; in our system we do it once daily, when our local cloud is lightly loaded.

We rigorously evaluate the proposed system using real deployment with thousands of multimedia

objects. Specifically, in the following subsections, we evaluate our system from four angles: (i) complete

system performance, (ii) comparison with YouTube, (iii) analysis of the signature method, and (iv)

accuracy, scalability and elasticity of the distributed matching engine component.

A. Performance of the Complete System

Videos. We assess the performance of the whole system with a large dataset of 11,000 3D videos

downloaded from YouTube. These videos are from different categories, and have diverse sizes, durations,

resolutions, and frame rates. Thus, they represent a good sample of most 3D videos on YouTube. 10,000

of these videos make the bulk of our query set, while the other 1,000 videos make the bulk of our

reference set. We downloaded both the 10,000 query videos and the 1,000 reference videos in a similar

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

17

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
r
e
c
is
io
n

(a) Precision–Recall curve

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

Precision

Recall

(b) Precision and recall vs.

threshold s

Fig. 3. Performance of the complete system for 3D video copy protection on more than 11,000 3D videos.

manner as follows, while keeping a list of all previously downloaded video IDs to ensure that the

reference set does not include any of the downloaded query videos. First, we used the APIs provided by

YouTube to download the top 100 videos in terms of view count in each video category. YouTube has

22 categories: Music, Entertainment, Sports, Film, Animation, News, Politics, Comedy, People, Blogs,

Science, Technology, Gaming, Howto, Style, Education, Pets, Animals, Autos, Vehicle, Travel, and Events.

Since some categories did not have any 3D videos and some of them had a small number, we added

a set of seed queries to expand our dataset. The queries we used were: 3d side by side, 3d trailer, 3d

landscape, 3d animation, 3d football, 3d gaming and 3d ads.

For the reference video set, in addition to the 1,000 downloaded videos, we used 14 other videos that

were manually downloaded to be as diverse as possible and the likelihood of them being in the query

set is low. We chose 10 out of these 14 videos and manipulated each of them using the ffmpeg video

processing tool in five different ways: cutting clips or segments, scaling, blurring, logo insertion, and

cropping. Thus, we created 50 videos in total. We added these 50 manipulated videos to the query set

to ensure that the query set has matches to some of the videos in the reference set, which made the

query set have 10,050 videos. We created signatures from all reference videos and inserted them in the

matching engine.

Methodology. For each frame of the query video, the signature is computed and the closest signatures

to it are retrieved from the distributed index. Candidate matches undergo an additional step to ensure that

the number of matching frames in the two videos is enough. For example, if frame x in the query video

matches frame y in the reference video, we expect frame x+1 in the query video to match frame y+1 in

the reference video. In order to consider this, a matching matrix is computed for each pair of candidate

reference video and query video. The size of a matching matrix is the number of frames in the considered

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

18

reference video times the number of frames in the query video against which the reference video is being

compared. A value of 1 in the (i, j) position of the matching matrix means that the ith frame of the

reference video has matched the jth frame of the query video. The longest diagonal sequence of 1s in

this matrix indicates the largest number of matching frames and is considered as a potential copy. The

final matching score between videos is the number of matches on the diagonal divided by the diagonal

length. We introduce a threshold parameter s to decide whether two videos match. If two videos have a

matching score less than s, they are not considered a match; otherwise they are a match. We vary the

threshold s between 0 and 1.0.

We measure the performance in terms of two basic metrics: precision (percentage of returned videos

that are true copies) and recall (percentage of true video copies that are returned). In this large experiment,

we compute the exact precision, which is possible as we can check whether a match declared by the

system is a true match or not by watching the videos. Computing the exact recall is tricky though, since

we cannot be 100% sure that the large query set does not contain any copies other than the added 50

videos, although we tried to minimize this possibility. The only way to be sure is to manually check

each of the 10,000 videos, which is a formidable task. To partially mitigate this issue, we compute

an approximation of the recall assuming that there are no other copies in the 10,000 videos. Thus, the

computed recall should be viewed as an upper bound on the achievable recall of our system. We compute

the exact recall on small datasets in later sections.

Results. We plot the results of this experiment in Figure 3. Figure 3(a) shows the precision-recall

(PR) curve, where we plot the approximate recall as discussed above. To get this PR curve, we change

the threshold from 0 to 1, and compute the precision and recall for each threshold. PR curves are a

standard evaluation method in image retrieval, as they contain rich information and can easily be read by

researchers [19]. The results clearly show that our system can achieve both high precision and recall. For

example, a precision of 100% with a recall of more than 80% can be achieved. To further analyze the

results, we show in Figure 3(b), how the precision and recall vary with the threshold parameter s. The

results show that our method can achieve precision and recall values of more than 80% for a wide range

of thresholds from 0.6 to 1. This means that our system does not only provide high accuracy, but it is

not very sensitive to the threshold s, which is an internal system parameter. In other words, the system

administrator does not need to accurately fine tune s.

In summary, this large-scale experiment with 11,000+ 3D videos and the whole system deployed on

multiple distributed machines confirm the accuracy of the proposed system.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

19

B. Comparison with YouTube

YouTube is one of the largest online video sharing and streaming sites in the world. It offers a video

protection service to its customers, which employs a sophisticated system to detect illegal copies of

protected videos. The system used in YouTube is called Content ID [6], which is a proprietary system

and we cannot know much details about it beyond what YouTube disclosed in its patent [10]. The

goal of this subsection is not to conduct full comparison between our system and Content ID, which is

not possible. Our goal is to show that while the Content ID system provides robust copy detection for

traditional 2D videos, it fails to detect most copies of 3D videos and that the proposed system, which

employs our new 3D signature method, outperforms Content ID by a large margin.

Methodology. To test the Content ID system, we download several copyrighted 2D and 3D videos

from YouTube. We perform various transformations on these videos and then upload them back to

YouTube to see whether the Content ID system can detect them as copies. In case of detection, YouTube

shows the message “Matched third party content” when a copyrighted video is uploaded. Similarly, we

test our system by using the same 3D videos downloaded from YouTube and subjected to the same

transformations.

In particular, we downloaded six 3D and six 2D protected videos from Warner Bros. and 3net YouTube

channels. The video lengths are in the range of 30 seconds to 2 minutes. When we uploaded each of

these 12 videos back to YouTube without any modifications, the Content ID system correctly identified

them all as copies.

Results for 2D Videos. We tested YouTube for detecting modified 2D videos. We applied six

transformations on each of the six 2D videos: blur, format change, frame dropping, re-encoding with

different resolution (scale), cutting 30 second clip, and cutting 40 second clip. Then, we uploaded all

36 modified versions of the 2D videos to YouTube. We found that the Content ID system can detect all

blur, format change, frame dropping, and re-encoding with different resolution transformations as copies,

resulting in a recall of 100% for these transformations. For the clip transformation, only one of the 30

seconds clips was detected, but all 40 seconds clips were detected as copies. Therefore, this experiment

shows that the YouTube Content ID is quite robust for 2D videos.

Results for 3D Videos. Now, we test the Content ID system on 3D videos and compare it against

our system. Recall that our system is general and can support different types of media, but we focus in

this paper on designing signatures for 3D videos as there have been little work on these videos, whereas

there are many works for 2D copy detection. The original 3D videos downloaded from YouTube are in

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

20

TABLE I

COMPARISON AGAINST YOUTUBE IN TERMS OF RECALL.

Transformation YouTube Proposed System

Blur 0/6 6/6

File format change (mp4 to avi) 6/6 6/6

Re-encoding: same bit-rate 0/6 6/6

Re-encoding: different bit-rate 0/6 6/6

Re-encoding: different resolution 0/6 6/6

Frame dropping 0/6 6/6

30 seconds clip 1/6 6/6

35 seconds clip 2/6 6/6

40 seconds clip 4/6 6/6

45 seconds clip 5/6 6/6

Anaglyph 5/6 5/6

Row-interleaved 5/6 6/6

Column-interleaved 6/6 6/6

2D-plus-depth 0/6 6/6

View synthesis 0/6 6/6

side-by-side format. We applied 15 different transformations; the first ten of these transformations are

common between 2D and 3D videos, while the other five are specific to 3D videos. The transformations

on each 3D video are: blur, file format change, re-encoding with same bit-rate, re-encoding with different

bit-rate, re-encoding with different resolution (scale), frame dropping, 30 seconds clip, 35 seconds clip,

40 seconds clip, 45 seconds clip, anaglyph, row-interleaved, column-interleaved, 2D-plus-depth, and view

synthesis. Anaglyph means changing the video format such that the right and left images are encoded

in different colors to render 3D perception on regular 2D displays using anaglyph glasses (color filters).

Row and column-interleaved indicate changing the format of the left and right images to suit row- and

column-interleaved types of displays. The 2D-plus-depth transformation computes a depth for the video

and presents the video as 2D stream and depth stream, which can be rendered by certain types of 3D

displays. View synthesis is used to create additional virtual views from the basic stereo video. This is

done to enhance user’s experience or to evade the copy detection process.

As in 2D videos, we uploaded all modified 90 (=15 x 6) 3D videos to YouTube in order to check

whether the Content ID system can identify them as copies. We explicitly specified that these videos are

3D when we uploaded them to YouTube. The results are shown in the second column of Table I. The

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

21

results clearly show the poor performance of the Content ID system on 3D videos. For example, the

Content ID system could not detect even a single copy of the six 3D videos when they are subjected to

seven different transformations. Some of these transformations are as simple as bluring and re-encoding

while others are more sophisticated such as view synthesis and 2D-plus-depth conversion. Furthermore,

except for few transformations, the Content ID system misses most of the modified copies. The three

transformations anaglyph, row-interleaved, and column-interleave result in videos that are similar to their

corresponding 2D versions. Since the 2D versions of the used 6 3D videos are also under copyright

protection, the videos resulting from such transformations are most probably matched against the 2D

versions of the original videos.

To assess the accuracy of our system, we use the same six 3D videos as our reference dataset. We

also add the 14 videos mentioned in Section VI-A to the reference dataset. We apply the same 15

transformations on the six 3D videos, resulting in 90 query videos. We add 1,000 other 3D videos

downloaded from YouTube to the query dataset. We add these noise videos in order to check whether

our system returns false copies. We report the results from our system in column three of Table I. To be

fairly comparable with Content ID, we only report the recall from our system that is achieved at 100%

precision, since through all of our experiments with YouTube the precision was 100%. As Table I shows,

our system was able to detect 89 out of the 90 modified copies of the 3D videos, including complex

ones such as view synthesis.

In summary, the results in this section show that: (i) there is a need for designing robust signatures

for 3D videos since the current system used by the leading company in the industry fails to detect most

modified 3D copies, and (ii) our proposed 3D signature method can fill this gap, because it is robust to

various transformations including new ones specific to 3D videos such as anaglyph and 2D-plus-depth

format conversions as well as synthesizing new virtual views.

C. Performance of 3D Signature Creation Component

We conduct small-scale, controlled experiments to rigorously analyze the proposed 3D signature method.

We need the experiment to be small because we manually modify videos in different ways and check

them one by one. This is needed to compute the exact precision and recall of the proposed method.

The reference video set contains the 14 videos mentioned in Section VI-A. The query set is created

by modifying some of the reference videos in many different ways. Specifically, we apply the following

transformations:

• Video Blurring: reduces the sharpness and contrast of the image. Radius of blur is in the range of [3,5].

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

22

• Video Cropping: crops and discards part of an image. The discarded pixels are chosen at the boundaries.

The number of discarded pixels is in the range [20,40].

• Video Scaling: reduces the resolution of the video and the scale factor is in the range [0.5,1.5].

• Logo Insertion: puts a logo on one of the corners of the video, the logo size is in the range of [20,40]

pixels.

• Frame Dropping: periodically drops frames from the original video. The period is in the range [2,10],

where 2 means every other frame is dropped and period 10 means every tenth frame is dropped. This

transformation changes the video frame rate.

• Video Transcoding: changes the video from one file format to another.

• Text Insertion: writes random text on the video at different places.

• Anaglyph: multiplexes the left and right views of the 3D video over each other with different colors,

typically red and blue.

• Row Interleaved: interleaves the left and right views of the 3D video horizontally row by row such

that the odd rows belong to the left view and the even rows belong to the right view.

• Column Interleaved: interleaves the left and right views of the 3D video vertically column by column

such that the odd columns belong to the left view and the even columns belong to the right view.

• 2D-plus-depth: converts the video from left and right views stacked together horizontally side-by-side

into another format which is a 2D video and its associated depth.

• View Synthesis: uses the original left and right views to create another two virtual views to be used

instead of the original views.

We conduct two types of experiments: (i) individual transformations, in which we study the effect of

each video transformation separately, and (ii) multiple transformations, in which we assess the impact of

multiple transformations applied to the same video. In the first individual transformations experiments,

we apply the above listed individual transformations (except view synthesis) on each of the 14 videos

mentioned in Section VI-A using ffmpeg. View synthesis is applied using the VSRS view synthesis

tool [26]. View synthesis is applied on two videos other than the 14, which are Ballet and BreakDancers.

We create 18 different versions from each of these two videos with synthesized views. In the multiple

transformations experiments, we choose 10 videos and apply on each of them three transformations at

the same time. These transformations are blurring, scaling and logo insertion. Although the combined

transformations are not likely to occur in many videos, they show the robustness of our method. Applying

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

23

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
r
e
c
is
io
n

(a) Single Transformation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
r
e
c
is
io
n

(b) Three Transformations

Fig. 4. The average accuracy of the proposed 3D signature method.

all these types of transformations on different videos results in a diverse and large query video set, which

stresses our signature method.

Results for Individual Transformations. We first present the average results across all videos and

all transformations. We plot the aggregate results in Figure 4(a) in the form of the precision versus

recall curve. The precision-recall curve shows the achievable high accuracy of the proposed method. For

example, a precision of 100% can be achieved with a recall up to 95%, by controlling the threshold value.

To better understand the impact of the threshold parameter, we analyze the achieved average precision

and recall by our method for all possible values of the threshold s. The figure is not shown due to space

limitations. Our results show that the proposed method can concurrently achieve high precision and recall.

For example, both the precision and recall are more than 90% for a large range of the threshold s. We

note that this high accuracy is achieved when comparing significantly modified copies of videos versus

reference videos. Our method achieves 100% accuracy (both precision and recall) when we compare

unmodified versions of the videos against reference videos.

Next, we analyze the accuracy of the proposed signature method for each video transformation sepa-

rately. This is to understand the robustness of the method against each transformation. We computed the

precision-recall curve for each case. In addition, we computed the precision and recall for each value of

the threshold. Due to space limitations, we omit these figures. The results show that our method is highly

robust against the quite common logo insertion transformation as it can achieve 100% precision and recall

at wide range of thresholds. This is because a logo can affect one or a few blocks in the video frames,

which is a relatively small part of the signature. Similar high accuracy results are achieved for two other

common transformations: video blurring and transcoding or format/bitrate change. In addition, for scaling,

cropping, and frame dropping, our method still achieves fairly high accuracy. For example, our method

is robust against video scaling. This is because during the creation of the signature, it is normalized by

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

24

the frame resolution as described in Section IV. Moreover, for frame dropping our method achieves high

precision and recall at low thresholds, which means that true matches are found but with low matching

score, due to the gaps in the matching diagonal between both videos. Finally, for cropping, the results

show that our signature method can identify 80% of the matches with 100% precision, or identify all

matches with about 90% precision, which indicates that our method is also robust against cropping. This

is because our 3D signature contains the depth values of each block. Since depth is usually smooth,

neighboring blocks usually have similar values, causing our 3D signature to be less sensitive to block

misalignments.

Results for Multiple Transformations. The aggregate results in the form of precision-recall curve

are shown in Figure 4(b). The results clearly show the high accuracy of the proposed method, as high

precision of more than 90% can be achieved with at least a recall of 90%. We note that the recall in this

experiment is slightly less than the achieved recall in the previous experiment, because of the combined

transformations applied in this case.

Running Time for 3D Signature Creation. In this experiment, we measure the running time of our

3D signature creation and compare it to the method in [12], which requires computing the depth maps.

Thus, we chose a practical depth estimation method [24]. We compute the running time for only the

depth estimation step of the signature creation method in [12] and compare it to the whole running time

of our method. We run the experiment for 362 frames on the same machine. The results show that the

average running time for our 3D signature creation is 0.87 sec, with minimum and maximum values of

0.39 sec and 1.62 sec, respectively. Whereas the average running time of depth estimation step alone is

68.91 sec, ranging from 61.26 sec and up to 85.59 sec.

It can be seen that depth estimation method is far more expensive than our proposed signature extraction;

the cost for just estimating the depth can be 100 times more than our signature extraction. As a result, [12]

is only a suitable solution for 2D-plus-depth formats where the expensive operation of depth estimation

is not needed. Moreover, [12] uses the depth signature as a filtering step before the visual fingerprint to

reduce the cost of computing visual signatures. While this argument is valid for 2D-plus-depth videos,

this is not the case for stereo videos because computing the dense depth map will be more expensive

than the visual signature.

Our results show that a coarse-grained disparity map is robust against multiple kinds of transformations

without compromising the precision, which suggests that computing the dense depth map is not needed

for such a problem.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

25

Effect of Frame Sampling on Performance. In order to speed up the matching process, simple

techniques such as frame sampling can be used. With a sampling rate of 1/n, only one frame every

n frames will get processed, therefore the matching process will get n times faster. In order to ensure

the robustness of our system when using frame sampling, we repeated the individual transformations

experiments with different sampling rates. The figures are omitted due to space limitations. Our results

show that our system can achieve high accuracy even with low sampling rates, although the recall drops

slightly with the decrease of sampling rate, because of the reduced amount of data. For example, we

can achieve 92% recall at 96% precision with a sampling rate of 1/10, while without frame sampling

we achieve a recall of 96% at 96% precision. That is, there is a loss of 4% in recall with a rate of

1/10. Also, with a sampling rate of 1/25 (about one frame per sec), we can achieve 86% recall at 92%

precision, while without frame sampling the achieved recall at precision 92% is 96%. Thus, there is only

a loss of 10% in recall with sampling rate of 1/25. As a result, we can speed up the matching process

significantly, while still having high accuracy.

D. Accuracy and Scalability of the Matching Engine

We evaluate the accuracy and scalability of the matching engine component of the proposed system.

We also compare our matching engine versus the best results reported by the RankReduce system [22],

which is the closest to our work.

Accuracy and Comparison Against RankReduce. We focus on evaluating the accuracy of the

computed nearest neighbors, which is the primitive function provided by the engine. The accuracy of the

retrieved K nearest neighbors for a point p is computed using the Precision@K(p) metric, which is

given by:

Precision@K(p) =

∑K
i=1

{Ti <= K}

K
, (5)

where Ti is the rank of a true neighbor. Ti <= K equals 1 if a true neighbor is within the retrieved

K, and 0 otherwise. The average precision of the retrieved K nearest neighbors across all points in the

query set Q is:

AvgPrecision@K =

∑|Q|
i=1

{Precision@K(i)}

|Q|
. (6)

We use the AvgPrecision@K metric in our experiments.

We compare against RankReduce [22], which implements a distributed LSH index. It maintains a

number of hash tables over a set of machines on a distributed file system, and it uses MapReduce for

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

26

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Scanned percentage of the dataset

A
v
g
P
re
ci
si
o
n
@
2
0

RankReduce

Our Engine

Fig. 5. Comparing our matching engine

versus the closest system in the literature,

RankReduce.

0 25 50 75 100 125 150 175
0

25

50

75

100

125

150

175

200

225

250

Reference Dataset Size (Millions)

R
u
n
n
in
g
T
im

e
(M

in
u
te
s)

8 Machines

16 Machines

32 Machines

64 Machines

128 Machines

Fig. 6. Running times of different dataset

sizes on different number of machines.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of K Nearest Neighbors

A
v
g
P
r
e
c
is
io
n

0 5 10 15 20
0

20

40

60

80

100

R
u
n
n
in
g
T
im

e
(m

in
)

AvgPrecis ion

Running Time

Fig. 7. The effect of K on running time and

accuracy.

searching the tables for similar points. We compare the results achieved by our matching engine against

the best results mentioned in [22] using the same dataset and the same settings. We did not implement

RankReduce; rather we use the the best stated results in its paper. We use the same dataset size of 32,000

points extracted from visual features of images. We measure the average precision at 20 nearest neighbors

at the same percentage of scanned bins, which are called probed buckets in RankReduce terms.

We plot the comparison results in Figure 5. The results first show that the proposed matching engine

produces high accuracy, which is more than 95% by scanning less than 10% of the data. In addition, the

results show that our matching engine consistently outperforms RankReduce, and the gain is significant

(15–20%) especially in the practical settings when we scan 5–10% of the data points. For example, when

the fraction of scanned data points is 5%, the average precision achieved by our engine is about 84%,

while the average precision achieved by RankReduce is less than 65% for the same fraction of scanned

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

27

data points. For RankReduce to achieve 84% average precision, it needs to scan at least 15% of the

dataset (3X more than our engine), which incurs significantly more computation and I/O overheads.

In addition to the superior performance in terms of average precision, our engine is more efficient in

terms of storage and computation. For storage, RankReduce needs to store the whole reference dataset

multiple times in hash tables; up to 32 times. On the other hand, our engine stores the reference dataset

only once in bins. Storage requirements for a dataset of size 32,000 points indicate that RankReduce needs

up to 8 GB of storage, while our engine needs up to 5 MB, which is more than 3 orders of magnitude

less. These storage requirements may render RankReduce not applicable for large datasets with millions

of points, while our engine can scale well to support massive datasets. For computation resources, our

engine and RankReduce use similar scan method to reference points found in bins or buckets. However,

as discussed above, RankReduce needs to scan more buckets to produce similar precision as our engine.

This makes our engine more computationally efficient for a given target precision, as it scans fewer bins.

Scalability and Elasticity of our Engine. We conduct multiple experiments to show that our engine

is scalable and elastic. Scalability means the ability to process large volumes of data, while elasticity

indicates the ability to efficiently utilize various amounts of computing resources. Both are important

characteristics: scalability is needed to keep up with the continuously increasing volumes of data and

elasticity is quite useful in cloud computing settings where computing resources can be acquired on

demand.

We run our engine on datasets of different sizes from 10 to 160 million data points, and on clusters of

sizes ranging from 8 to 128 machines from Amazon. These data points are visual features extracted from

1 million images download from ImageNet [8]. From each image, we extract up to 200 SIFT features,

which results in a dataset of up to 200 million data points. In all experiments, we compute the K = 10

nearest neighbors for a query dataset of size 100,000 data points. We measure the total running time to

complete processing all queries, and we plot the results in Figure 6. The figure shows that our engine is

able to handle large datasets, up to 160 million reference data points are used in creating the distributed

index. More importantly, the running time grows almost linearly with increasing the dataset size on the

same number of machines. Consider for example the curve showing the running times on 32 machines.

The running times for the reference dataset of sizes 40, 80, and 160 million data points are about 40, 85,

and 190 minutes, respectively.

In addition, the results in Figure 6 clearly indicate that our engine can efficiently utilize any available

computing resources. This is shown by the almost linear reduction in the running time of processing the

same dataset with more machines. For example, the running times of processing a reference dataset of

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

28

size 80 million data points are 160, 85, 52, and 27 minutes for clusters of sizes 16, 32, 64, and 128

machines, respectively. The scalability and elasticity of our engine are obtained mainly by our design

of the distributed index, which partitions the datasets into independent and non-overlapping bins. These

bins are allocated independently to computing machines for further processing. This data partitioning and

allocation to bins enable flexible and dynamic distribution of the computational workload to the available

computing resources, which is supported by the MapReduce framework.

Effect of Number of K Nearest Neighbors. In this experiment, we study the effect of changing

the number of K nearest neighbors retrieved. We measure the running time and the average precision

for different values of K, while maintaining a fixed scanned percentage of the reference dataset. The

results are plotted in Figure 7, which show that while we achieve high precision for returning the closest

neighbor (i.e., K = 1), with value of 94%, the average precision achieved is not significantly impacted by

increasing K. For example at K = 5 the average precision is 88%, and at K = 20 the average precision

is 82%, losing only 6% of the precision when returning 4 times more neighbors. The results also show

that the effect of K on running time is negligible, since running time is mainly related to the size of the

scanned data points.

VII. CONCLUSIONS AND FUTURE WORK

Distributing copyrighted multimedia objects by uploading them to online hosting sites such as YouTube

can result in significant loss of revenues for content creators. Systems needed to find illegal copies of

multimedia objects are complex and large scale. In this paper, we presented a new design for multimedia

content protection systems using multi-cloud infrastructures. The proposed system supports different

multimedia content types and it can be deployed on private and/or public clouds. Two key components

of the proposed system are presented. The first one is a new method for creating signatures of 3D videos.

Our method constructs coarse-grained disparity maps using stereo correspondence for a sparse set of

points in the image. Thus, it captures the depth signal of the 3D video, without explicitly computing

the exact depth map, which is computationally expensive. Our experiments showed that the proposed 3D

signature produces high accuracy in terms of both precision and recall and it is robust to many video

transformations including new ones that are specific to 3D videos such as synthesizing new views. The

second key component in our system is the distributed index, which is used to match multimedia objects

characterized by high dimensions. The distributed index is implemented using the MapReduce framework

and our experiments showed that it can elastically utilize varying amount of computing resources and

it produces high accuracy. The experiments also showed that it outperforms the closest system in the

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

29

literature in terms of accuracy and computational efficiency. In addition, we evaluated the whole content

protection system with more than 11,000 3D videos and the results showed the scalability and accuracy of

the proposed system. Finally, we compared our system against the Content ID system used by YouTube.

Our results showed that: (i) there is a need for designing robust signatures for 3D videos since the current

system used by the leading company in the industry fails to detect most modified 3D copies, and (ii)

our proposed 3D signature method can fill this gap, because it is robust to many 2D and 3D video

transformations.

The work in this paper can be extended in multiple directions. For example, our current system is

optimized for batch processing. Thus, it may not be suitable for online detection of illegally distributed

multimedia streams of live events such as soccer games. In live events, only small segments of the video

are available and immediate detection of copyright infringement is crucial to minimize financial losses. To

support online detection, the matching engine of our system needs to be implemented using a distributed

programming framework that supports online processing, such as Spark. In addition, composite signature

schemes that combine multiple modalities may be needed to quickly identify short video segments.

Furthermore, the crawler component needs to be customized to find online sites that offer pirated video

streams and obtain segments of these streams for checking against reference streams, for which the

signatures would also need to be generated online. Another future direction for the work in this paper

is to design signatures for recent and complex formats of 3D videos such as multiview plus depth. A

multiview plus depth video has multiple texture and depth components, which allow users to view a

scene from different angles. Signatures for such videos would need to capture this complexity, while

being efficient to compute, compare, and store.

REFERENCES

[1] A. Abdelsadek. Distributed index for matching multimedia objects. Master’s thesis, Simon Fraser University, Canada,

2014.

[2] A. Abdelsadek and M. Hefeeda. Dimo: Distributed index for matching multimedia objects using mapreduce. In Proc. of

ACM Multimedia Systems Conference (MMSys’14), pages 115–125, Singapore, March 2014.

[3] M. Aly, M. Munich, and P. Perona. Distributed Kd-Trees for Retrieval from Very Large Image Collections. In Proc. of

British Machine Vision Conference (BMVC), Dundee, UK, August 2011.

[4] J. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–

517, September 1975.

[5] P. Cano, E. Batle, T. Kalker, and J. Haitsma. A review of algorithms for audio fingerprinting. In Proc. of IEEE Workshop

on Multimedia Signal Processing, pages 169–173, St. Thomas, US Virgin Islands, December 2002.

[6] Copyright on Youtube. http://www.youtube.com/yt/copyright/.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

30

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In Proc. of Symposium on Operating

Systems Design and Implementation (OSDI’04), pages 137–150, San Francisco, CA, December 2004.

[8] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Proc.

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), pages 248–255, Miami, FL, June 2009.

[9] A. Hampapur, K. Hyun, and R. Bolle. Comparison of sequence matching techniques for video copy detection. In Proc. of

SPIE Conference on Storage and Retrieval for Media Databases (SPIE’02), pages 194–201, San Jose, CA, January 2002.

[10] S. Ioffe. Full-length video fingerprinting. Google Inc., July 24 2012. US Patent 8229219.

[11] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe.

Watermarking techniques for intellectual property protection. In Proc. of the 35th Annual Design Automation Conference

(DAC’98), pages 776–781, San Francisco, CA, June 1998.

[12] N. Khodabakhshi and M. Hefeeda. Spider: A system for finding 3d video copies. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM), 9(1):7:1–7:20, February 2013.

[13] S. Lee and C. Yoo. Robust video fingerprinting for content-based video identification. IEEE Transactions on Circuits and

Systems for Video Technology, 18(7):983–988, July 2008.

[14] H. Liao, J. Han, and J. Fang. Multi-dimensional index on hadoop distributed file system. In Proc. of IEEE Conference on

Networking, Architecture and Storage (NAS’10), pages 240–249, Macau, China, July 2010.

[15] Z. Liu, T. Liu, D. Gibbon, and B. Shahraray. Effective and scalable video copy detection. In Proc. of ACM Conference

on Multimedia Information Retrieval (MIR’10), pages 119–128, Philadelphia, PA, March 2010.

[16] J. Lu. Video fingerprinting for copy identification: From research to industry applications. In IS&T/SPIE Electronic

Imaging, volume 7254 of SPIE Proceedings, pages 725402–725402. International Society for Optics and Photonics, SPIE,

2009.

[17] W. Lu, Y. Shen, S. Chen, and B. Ooi. Efficient processing of k nearest neighbor joins using mapreduce. Proceedings of

the VLDB Endowment (PVLDB), 5(10):1016–1027, June 2012.

[18] E. Metois, M. Shull, and J. Wolosewicz. Detecting online abuse in images. Markmonitor Inc., Apr. 12 2011. US Patent

7925044.

[19] H. Müller, W. Müller, D. Squire, S. Marchand-Maillet, and T. Pun. Performance evaluation in content-based image retrieval:

overview and proposals. Pattern Recognition Letters, 22(5):593–601, April 2001.

[20] P. Ram and A. Gray. Which space partitioning tree to use for search? In Proc. of Advances in Neural Information

Processing Systems (NIPS’13), pages 656–664, Lake Tahoe, NV, December 2013.

[21] V. Ramachandra, M. Zwicker, and T. Nguyen. 3D video fingerprinting. In Proc. of 3DTV Conference: The True Vision -

Capture, Transmission and Display of 3D Video (3DTV’08), pages 81 –84, Istanbul, Turkey, May 2008.

[22] A. Stupar, S. Michel, and R. Schenkel. Rankreduce - processing k-nearest neighbor queries on top of mapreduce. In

Proc. of Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR’10), pages 13–18, Geneva,

Switzerland, July 2010.

[23] K. Tasdemir and A. Cetin. Motion vector based features for content based video copy detection. In Proc. of International

Conference on Pattern Recognition (ICPR’10), pages 3134 –3137, Istanbul, Turkey, August 2010.

[24] U. Capeto. Depth Map Automatic Generator. http://3dstereophoto.blogspot.com/2013/04/

depth-map-automatic-generator-dmag.html, April 2013.

[25] Vobile Launches VDNA 3D. http://www.vobileinc.com/press.php?id=23.

[26] ISO/IEC JTC1/SC29/WG11, Reference softwares for depth estimation and view synthesis. Doc. M15377, April 2008.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

31

Mohamed Hefeeda received his Ph.D. from Purdue University, USA in 2004, and M.Sc. and B.Sc.

from Mansoura University, Egypt in 1997 and 1994, respectively. He is a Principal Scientist in the Qatar

Computing Research Institute (QCRI), Doha, Qatar. He is on leave from Simon Fraser University, Canada,

where he is a Professor in the School of Computing Science. His research interests include multimedia

networking over wired and wireless networks, peer-to-peer systems, mobile multimedia, and cloud comput-

ing. In 2011, he was awarded one of the prestigious NSERC Discovery Accelerator Supplements (DAS),

which were granted to a selected group of researchers in all Science and Engineering disciplines in Canada. His research on

efficient video streaming to mobile devices has been featured in multiple international news venues, including ACM Tech News,

World Journal News, and CTV British Columbia. He serves on the editorial boards of several premier journals such as the ACM

Transactions on Multimedia Computing, Communications and Applications (TOMM), where he was named the best associate

editor in 2014. He has served on many technical program committees of major conferences in his research area, such as ACM

Multimedia. Dr. Hefeeda has co-authored more than 80 refereed journal and conference papers and has two granted patents.

Tarek ElGamal received the B.Sc. degree from Cairo University, Egypt in 2011. He is working as a

software engineer in the Qatar Computing Research Institute (QCRI), Doha, Qatar. Prior to joining QCRI,

he was a software engineer in the Microsoft Advanced Technology Labs in Cairo (ATLC). His research

interests are in the areas of cloud computing, distributed systems, and big data analytics.

Kiana Calagari received the BSc and MSc degrees in Electrical Engineering from Sharif University

of Technology, Iran, in 2010 and 2012, respectively. She is currently a PhD student in Computing

Science at Simon Fraser University, Canada. Her research interests include multimedia systems, multimedia

networking and cloud computing.

1520-9210 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMM.2015.2389628, IEEE Transactions on Multimedia

32

Ahmed Abdelsadek received the BSc degree in Computing Science from the Faculty of Computers and

Information, Cairo University, Egypt in 2010, and the MSc degree in Computing Science from Simon

Fraser University, Canada in 2014. His research interests include Distributed Systems and Content-based

Multimedia Information Retrieval.

